銀川市某企業(yè)為某計算機產業(yè)基地提供電腦配件.受美元走低的影響,從去年1至9月(前年12月份原材料價格540元/件),該配件的原材料價格一路攀升,每件配件的原材料價格y1(元)與月份x(1≤x≤9,且x取整數(shù))之間的函數(shù)關系如下表:
月份x | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
價格y1(元/件) | 560 | 580 | 600 | 620 | 640 | 660 | 680 | 700 | 720 |
(1)y1=20x+540,y2=10x+630;(2)4月大為450萬元;(3)10
解析試題分析:(1)把表格(1)中任意2點的坐標代入直線解析式可得y1的解析式.把(10,730)(12,750)代入直線解析式可得y2的解析式,
(2)分情況探討得:1≤x≤9時,利潤=P1×(售價-各種成本);10≤x≤12時,利潤=P2×(售價-各種成本);并求得相應的最大利潤即可;
(3)根據(jù)1至5月的總利潤1700萬元得到關系式求值即可.
(1)y1與x之間的函數(shù)關系式為y1=20x+540,
y2與x之間滿足的一次函數(shù)關系式為y2=10x+630;
(2)去年1至9月時,銷售該配件的利潤w=p1 (1000-50-30-y1)
=(0.1x+1.1)(1000?50?30?20x?540)
=(0.1x+1.1)(380?20x)=-2x2+160x+418
=-2( x-4)2+450,(1≤x≤9,且x取整數(shù))
∴當x=4時,w=450(萬元);
去年10至12月時,銷售該配件的利潤w=p2 (1000-50-30-y2)
=(-0.1x+2.9)(1000-50-30-10x-630)
=(-0.1x+2.9)(290-10x)=( x-29)2,(10≤x≤12,且x取整數(shù)),
∴當x=10時,w=361(萬元),
∵450>361,
∴去年4月銷售該配件的利潤比10月份銷售利潤大為450萬元.
(3)去年12月份銷售量為:-0.1×12+0.9=1.7(萬件),
今年原材料的價格為:750+60=810(元),
今年人力成本為:50×(1+20﹪)=60(元),
由題意得5×[1000(1+a﹪)-810-60-30]×1.7(1-0.1a﹪)=1700,
設t=a﹪,整理,得10t2-99t+10=0,
解得t=,
∵=97.
∴t1≈0.1或t2≈9.8,
∴a1≈10或a2≈980.
∵1.7(1-0.1a﹪)≥1,
∴a2≈980舍去,
∴a≈10.
答:a的整數(shù)值為10.
考點:本題考查了一次函數(shù)和二次函數(shù)的應用
點評:根據(jù)二次函數(shù)的最值及相應的取值范圍得到一定范圍內的最大值是解答本題的易錯點;利用估算求得相應的整數(shù)解是解答本題的難點.
科目:初中數(shù)學 來源: 題型:閱讀理解
月份x | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
價格y1(元/件) | 560 | 580 | 600 | 620 | 640 | 660 | 680 | 700 | 720 |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
月份x | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
價格y1(元/件) | 560 | 580 | 600 | 620 | 640 | 660 | 680 | 700 | 720 |
查看答案和解析>>
科目:初中數(shù)學 來源:2013年重慶市中考數(shù)學試卷(樣卷)(解析版) 題型:解答題
月份x | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
價格y1(元/件) | 560 | 580 | 600 | 620 | 640 | 660 | 680 | 700 | 720 |
查看答案和解析>>
科目:初中數(shù)學 來源:2013年重慶市中考數(shù)學模擬試卷(二)(解析版) 題型:解答題
月份x | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
價格y1(元/件) | 560 | 580 | 600 | 620 | 640 | 660 | 680 | 700 | 720 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com