【題目】如圖,AB∥CD,∠BAC與∠DCA的平分線相交于點(diǎn)G,GE⊥AC于點(diǎn)E,F(xiàn)為AC上的一點(diǎn),且FA=FG=FC,GH⊥CD于H.下列說法:①AG⊥CG;②∠BAG=∠CGE;③S△AFG=S△CFG;④若∠EGH︰∠ECH=2︰7,則∠EGF=50°.其中正確的有( )
A. ①②③④ B. ②③④ C. ①③④ D. ①②④
【答案】A
【解析】試題分析:靈活利用平行線的性質(zhì)、等角的余角相等、四邊形的內(nèi)角和、等邊對等角、三角形的面積公式、角平分線的性質(zhì)進(jìn)行分析.
①中,根據(jù)兩條直線平行,同旁內(nèi)角互補(bǔ),得∠BAC+∠ACD=180°,
再根據(jù)角平分線的概念,得∠GAC+∠GCA=∠BAC+∠ACD=×180°=90°,
再根據(jù)三角形的內(nèi)角和是180°,得AG⊥CG;
②中,根據(jù)等角的余角相等,得∠CGE=∠GAC,故∠BAG=∠CGE;
③中,根據(jù)三角形的面積公式,
∵AF=CF,∴S△AFG=S△CFG;
④中,根據(jù)題意,得:在四邊形GECH中,∠EGH+∠ECH=180度.
又∠EGH:∠ECH=2:7,則∠EGH=180°×=40°,∠ECH=180°×=140度.
∵CG平分∠ECH,∴∠FCG=∠ECH=70°,
根據(jù)直角三角形的兩個(gè)銳角互余,得∠EGC=20°.
∵FG=FC,
∴∠FGC=∠FCG=70°,
∴∠EGF=50°.
故上述四個(gè)都是正確的.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,BF平分∠ABC,AF⊥BF于點(diǎn)F,D為AB的中點(diǎn),連接DF延長交AC于點(diǎn)E.若AB=10,BC=16,則線段EF的長為( )
A.2
B.3
C.4
D.5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,原有一大長方形,被分割成3個(gè)正方形和2個(gè)長方形后仍是中心對稱圖形.若原來該大長方形的周長是120,則分割后不用測量就能知道周長的圖形標(biāo)號(hào)為( )
A. ①② B. ②③ C. ①③ D. ①②③
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個(gè)長方形的長是,寬是,周長是,面積是.
(1)寫出隨變化而變化的關(guān)系式;
(2)寫出隨變化而變化的關(guān)系式;
(3)當(dāng)時(shí), 等于多少? 等于多少?
(4)當(dāng)增加時(shí), 增加多少? 增加多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對非負(fù)實(shí)數(shù)x“四舍五入”到個(gè)位的值記為<x>,即當(dāng)n為非負(fù)整數(shù)時(shí),若,則<x>=n,如<0.46>=0,<3.67>=4。給出下列關(guān)于<x>的結(jié)論:
①<1.493>=1;
②<2x>=2<x>;
③若,則實(shí)數(shù)x的取值范圍是;
④當(dāng)x≥0,m為非負(fù)整數(shù)時(shí),有;
⑤。
其中,正確的結(jié)論有 (填寫所有正確的序號(hào))。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的方程x2﹣(m+2)x+2m﹣1=0.
(1)求證:此方程有兩個(gè)不相等的實(shí)數(shù)根;
(2)若拋物線y=x2﹣(m+2)x+2m﹣1=0與x軸有兩個(gè)交點(diǎn)都在x軸正半軸上,求m的取值范圍;
(3)填空:若x2﹣(m+2)x+2m﹣1=0的兩根都大于1,則m的取值范圍是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一組數(shù)據(jù)2、3、6、8、x的眾數(shù)是x,其中x又是不等式組 的整數(shù)解,則這組數(shù)據(jù)的中位數(shù)可能是( )
A.3
B.4
C.6
D.3或6
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在中, ,將繞點(diǎn)A順時(shí)針旋轉(zhuǎn)到的位置,點(diǎn)E在斜邊AB上,連結(jié)BD,過點(diǎn)D作于點(diǎn)F.
(1)如圖1,若點(diǎn)F與點(diǎn)A重合.①求證: ;②若,求出;
(2)若,如圖2,當(dāng)點(diǎn)F在線段CA的延長線上時(shí),判斷線段AF與線段AB的數(shù)量關(guān)系.并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解某品牌電風(fēng)扇銷售量的情況,對某商場5月份該品牌甲、乙、丙三種型號(hào)的電風(fēng)扇銷售量進(jìn)行統(tǒng)計(jì),繪制如下兩個(gè)統(tǒng)計(jì)圖(均不完整).請你結(jié)合圖中的信息,解答下列問題:
(1)該商場5月份售出這種品牌的電風(fēng)扇共多少臺(tái)?
(2)若該商場計(jì)劃訂購這三種型號(hào)的電風(fēng)扇共2000臺(tái),根據(jù)5月份銷售量的情況,求該商場應(yīng)訂購丙種型號(hào)電風(fēng)扇多少臺(tái)比較合理?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com