精英家教網(wǎng)把兩個全等的等腰直角三角形ABC和EFG(其直角邊長均為4)疊放在一起(如圖①),且使三角板EFG的直角頂點G與三角板ABC的斜邊中點O重合.現(xiàn)將三角板EFG繞O點逆時針旋轉(旋轉角α滿足條件:0°<α<90°),四邊形CHGK是旋轉過程中兩三角板的重疊部分(如圖②).
(1)在上述旋轉過程中,BH與CK有怎樣的數(shù)量關系四邊形CHGK的面積有何變化?證明你發(fā)現(xiàn)的結論;
(2)連接HK,在上述旋轉過程中,設BH=x,△GKH的面積為y,求y與x之間的函數(shù)關系式,并寫出自變量x的取值范圍;
(3)在(2)的前提下,是否存在某一位置,使△GKH的面積恰好等于△ABC面積的
516
?若存在,求出此時x的值;若不存在,說明理由.
分析:(1)可將四邊形CHGK分成兩部分,然后通過證三角形全等,將四邊形的面積進行轉換來求解.連接CG,可通過證明三角形CGK與三角形BGH全等來得出他們的面積相等,進而將四邊形CHGK的面積轉換成三角形CGB的面積也就是三角形ABC面積的一半,由此可得出四邊形CHGK的面積是4,所以不會改變;
(2)連接HK后,根據(jù)(1)中得出的四邊形CHGK的面積為4,可根據(jù)三角形GHK的面積=四邊形CHGK的面積-三角形CHK的面積來求,如果BH=x,那么根據(jù)(1)的結果CK=x,有BC的長,那么CH=4-x,由此可得出關于x,y的函數(shù)關系式.x的取值范圍應該大于零小于4;
(3)只需將y=
5
16
×8代入(2)的函數(shù)式中,可得出x的值.然后判斷x是否符合要求即可.
解答:解:(1)在上述旋轉過程中,BH=CK,四邊形CHGK的面積精英家教網(wǎng)不變.
證明:連接CG,KH,
∵△ABC為等腰直角三角形,O(G)為其斜邊中點,
∴CG=BG,CG⊥AB,
∴∠ACG=∠B=45°,
∵∠BGH與∠CGK均為旋轉角,
∴∠BGH=∠CGK,
在△BGH與△CGK中,
∠B=∠KCG
BG=CG
∠BGH=∠CGK

∴△BGH≌△CGK(ASA),
∴BH=CK,S△BGH=S△CGK
∴S四邊形CHGK=S△CHG+S△CGK=S△CHG+S△BGH=
1
2
S△ABC=
1
2
×
1
2
×4×4=4,
即:S四邊形CHGK的面積為4,是一個定值,在旋轉過程中沒有變化;

(2)∵AC=BC=4,Bk=x,
∴CH=4-x,CK=x.
由S△GHK=S四邊形CHGK-S△CHK
得y=4-
1
2
x(4-x),
∴y=
1
2
x2-2x+4.
由0°<α<90°,得到BH最大=BC=4,
∴0<x<4;

(3)存在.
根據(jù)題意,得
1
2
x2-2x+4=
5
16
×8,
解這個方程,得x1=1,x2=3,
即:當x=1或x=3時,△GHK的面積均等于△ABC的面積的
5
16
點評:本題主要考查了等腰直角三角形的性質以及全等三角形的判定等知識點,通過構建全等三角形將面積進行轉換是解題的關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

把兩個全等的等腰直角三角板△ABC和△EFG(其直角邊長均為4)疊放在一起(如圖1),且使三角板EFG的直角頂點G與三角板ABC的斜邊中點O重合.現(xiàn)將三角板EFG繞O點順時針方向旋轉(旋轉角α滿足條件:0°<α<90°),四邊形CHGK是旋轉過程中兩三角板的重疊部分(如圖2).在上述旋轉過程中,BH與CK有怎樣的數(shù)量關系?四邊形CHGK的面積有何變化?證明你發(fā)現(xiàn)的結論.精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源:云南省期末題 題型:解答題

把兩個全等的等腰直角三角板△ABC和△EFG(其直角邊長均為4)疊放在一起(如圖1),且使三角板EFG的直角頂點G與三角板ABC的斜邊中點O重合.現(xiàn)將三角板EFG繞O點順時針方向旋轉(旋轉角滿足條件:0°<α<90°),四邊形CHGK是旋轉過程中兩三角板的重疊部分(如圖2).在上述旋轉過程中,BH與CK有怎樣的數(shù)量關系?四邊形CHGK的面積有何變化?證明你發(fā)現(xiàn)的結論.

查看答案和解析>>

科目:初中數(shù)學 來源:第25章《圖形的變換》常考題集(13):25.2 旋轉變換(解析版) 題型:解答題

把兩個全等的等腰直角三角形ABC和EFG(其直角邊長均為4)疊放在一起(如圖①),且使三角板EFG的直角頂點G與三角板ABC的斜邊中點O重合.現(xiàn)將三角板EFG繞O點逆時針旋轉(旋轉角α滿足條件:0°<α<90°),四邊形CHGK是旋轉過程中兩三角板的重疊部分(如圖②).
(1)在上述旋轉過程中,BH與CK有怎樣的數(shù)量關系四邊形CHGK的面積有何變化?證明你發(fā)現(xiàn)的結論;
(2)連接HK,在上述旋轉過程中,設BH=x,△GKH的面積為y,求y與x之間的函數(shù)關系式,并寫出自變量x的取值范圍;
(3)在(2)的前提下,是否存在某一位置,使△GKH的面積恰好等于△ABC面積的?若存在,求出此時x的值;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:第23章《旋轉》?碱}集(04):23.1 圖形的旋轉(解析版) 題型:解答題

把兩個全等的等腰直角三角形ABC和EFG(其直角邊長均為4)疊放在一起(如圖①),且使三角板EFG的直角頂點G與三角板ABC的斜邊中點O重合.現(xiàn)將三角板EFG繞O點逆時針旋轉(旋轉角α滿足條件:0°<α<90°),四邊形CHGK是旋轉過程中兩三角板的重疊部分(如圖②).
(1)在上述旋轉過程中,BH與CK有怎樣的數(shù)量關系四邊形CHGK的面積有何變化?證明你發(fā)現(xiàn)的結論;
(2)連接HK,在上述旋轉過程中,設BH=x,△GKH的面積為y,求y與x之間的函數(shù)關系式,并寫出自變量x的取值范圍;
(3)在(2)的前提下,是否存在某一位置,使△GKH的面積恰好等于△ABC面積的?若存在,求出此時x的值;若不存在,說明理由.

查看答案和解析>>

同步練習冊答案