用換元法解分式方程數(shù)學(xué)公式+數(shù)學(xué)公式-2=0,設(shè)數(shù)學(xué)公式,則方程可化為關(guān)于y的整式方程為


  1. A.
    y2-2y+1=0
  2. B.
    2y2-3y+1=0
  3. C.
    2y2+y-3=0
  4. D.
    y2+y-2=0
A
分析:換元法即是整體思想的考查,解題的關(guān)鍵是找到這個整體,此題已設(shè),則,代入原式整理即可求解.
解答:設(shè)代入原方程得:y+-2=0,
方程兩邊同乘以y整理得:y2-2y+1=0.
故選A.
點評:換元法解分式方程時常用方法之一,它能夠把一些分式方程化繁為簡,化難為易,對此應(yīng)注意總結(jié)能用換元法解的分式方程的特點,尋找解題技巧.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

用換元法解分式方程x2+
1
x2
-2(x+
1
x
)-1=0時,如果設(shè)y=x+
1
x
,那么原方程可化為關(guān)于y的一元二次方程的一般形式是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

用換元法解分式方程
2x-1
x
-
x
2x-1
=2時,如果設(shè)
2x-1
x
=y,并將原方程化為關(guān)于y的整式方程,那么這個整式方程是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

用換元法解分式方程
1-x
x2+2
+
x2+2
2(1-x)
=
3
2
,設(shè)
1-x
x2+2
=y
,則原分式方程換元整理后的整式方程為( 。
A、y+
1
y
=
3
2
B、y2+y=
3
2
C、2y2-3y+1=0
D、2y2-3y+2=0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

用換元法解分式方程:
x2-2
x
+
x
x2-2
=2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

用換元法解分式方程x2-3x-1=
12x2-3x
時,如果設(shè)y=x2-3x,那么換元后化簡所得的整式方程是
 

查看答案和解析>>

同步練習(xí)冊答案