【題目】如圖,在Rt△ABC中,∠ABC=90°,AB=CB,以AB為直徑的⊙O交AC于點D,點E是AB邊上一點(點E不與點A、B重合),DE的延長線交⊙O于點G,DF⊥DG,且交BC于點F.
(1)求證:AE=BF;
(2)連接GB,EF,求證:GB∥EF;
(3)若AE=1,EB=2,求DG的長.
【答案】(1)(2)見解析 (3).
【解析】(1)連接BD,由三角形ABC為等腰直角三角形,求出∠A與∠C的度數,根據AB為圓的直徑,利用圓周角定理得到∠ADB為直角,即BD垂直于AC,利用直角三角形斜邊上的中線等于斜邊的一半,得到AD=DC=BD=AC,進而確定出∠A=∠FBD,再利用同角的余角相等得到一對角相等,利用ASA得到三角形AED與三角形BFD全等,利用全等三角形對應邊相等即可得證;
(2)連接EF,BG,由三角形AED與三角形BFD全等,得到ED=FD,進而得到三角形DEF為等腰直角三角形,利用圓周角定理及等腰直角三角形性質得到一對同位角相等,利用同位角相等兩直線平行即可得證;
(3)由全等三角形對應邊相等得到AE=BF=1,在直角三角形BEF中,利用勾股定理求出EF的長,利用銳角三角形函數定義求出DE的長,利用兩對角相等的三角形相似得到三角形AED與三角形GEB相似,由相似得比例,求出GE的長,由GE+ED求出GD的長即可.
(1)證明:連接BD,
在Rt△ABC中,∠ABC=90°,AB=BC,
∴∠A=∠C=45°,
∵AB為圓O的直徑,
∴∠ADB=90°,即BD⊥AC,
∴AD=DC=BD=AC,∠CBD=∠C=45°,
∴∠A=∠FBD,
∵DF⊥DG,
∴∠FDG=90°,
∴∠FDB+∠BDG=90°,
∵∠EDA+∠BDG=90°,
∴∠EDA=∠FDB,
在△AED和△BFD中,
∠A=∠FBD,AD=BD,∠EDA=∠FDB,
∴△AED≌△BFD(ASA),
∴AE=BF;
(2)證明:連接EF,BG,
∵△AED≌△BFD,
∴DE=DF,
∵∠EDF=90°,
∴△EDF是等腰直角三角形,
∴∠DEF=45°,
∵∠G=∠A=45°,
∴∠G=∠DEF,
∴GB∥EF;
(3)∵AE=BF,AE=1,
∴BF=1,
在Rt△EBF中,∠EBF=90°,
∴根據勾股定理得:EF2=EB2+BF2,
∵EB=2,BF=1,
∴EF=,
∵△DEF為等腰直角三角形,∠EDF=90°,
∴cos∠DEF=,
∵EF=,
∴DE=×,
∵∠G=∠A,∠GEB=∠AED,
∴△GEB∽△AED,
∴,即GEED=AEEB,
∴GE=2,即GE=,
則GD=GE+ED=.
科目:初中數學 來源: 題型:
【題目】如圖,四邊形ABCD中,對角線AC、BD相交于點O,AO=CO,BO=DO,且∠ABC+∠ADC=180°.
(1)求證:四邊形ABCD是矩形.
(2)若∠ADF:∠FDC=3:2,DF⊥AC,則∠BDF的度數是多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知⊙O的直徑AB=10,弦AC=6,∠BAC的平分線交⊙O于點D,過點D作DE⊥AC交AC的延長線于點E.
(1)求證:DE是⊙O的切線.
(2)求DE的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在﹣2.5、(﹣1)2、2、﹣|﹣0.5|,﹣(﹣3)中,最小的數是a,絕對值最小的數是b.
(1)求(﹣b+a)的值;
(2)求滿足關于x的不等式bx<b﹣a的負整數解.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,一次函數分別交y軸、x軸于A、B兩點,拋物線y=﹣x2+bx+c過A、B兩點.
(1)求這個拋物線的解析式;
(2)作垂直x軸的直線x=t,在第一象限交直線AB于M,交這個拋物線于N.求當t取何值時,MN有最大值?最大值是多少?
(3)在(2)的情況下,以A、M、N、D為頂點作平行四邊形,求第四個頂點D的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知等邊△ABC的邊長為4cm,點P,Q分別從B,C兩點同時出發(fā),其中點P沿BC向終點C運動,速度為1cm/s;
點Q沿CA,AB向終點B運動,速度為2cm/s,設它們運動的時間為x(s),
(1)如圖(1),當x為何值時,PQ∥AB;
(2)如圖(2),若PQ⊥AC,求x;
(3)如圖(3),當點Q在AB上運動時,PQ與△ABC的高AD交于點O,OQ與OP是否總是相等?請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=4,AD=5,AD、AB、BC分別與⊙O相切于E、F、G三點,過點D作⊙O的切線交BC于點M,則DM的長為( )
A. B. C. D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知點D在反比例函數y=的圖象上,過點D作x軸的平行線交y軸于點B(0,3),過點A(5,0)的直線y=kx+b與y軸于點C,且BD=OC,tan∠OAC=.
(1)求反比例函數y=和直線y=kx+b的解析式;
(2)連接CD,試判斷線段AC與線段CD的關系,并說明理由;
(3)點E為x軸上點A右側的一點,且AE=OC,連接BE交直線CA于點M,求∠BMC的度數.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com