如圖,在邊長為3的正方形ABCD中,點(diǎn)E是BC邊上的點(diǎn),BE=1,∠AEP=90°,且EP交正方形外角的平分線CP于點(diǎn)P,交邊CD于點(diǎn)F,

(1)的值為    ;

(2)求證:AE=EP;

(3)在AB邊上是否存在點(diǎn)M,使得四邊形DMEP是平行四邊形?若存在,請給予證明;若不存在,請說明理由.

 

【答案】

解:(1)∵四邊形ABCD是正方形,∴∠B=∠D。

∵∠AEP=90°,∴∠BAE=∠FEC。

在Rt△ABE中,AB=3,BE=1,∴。

,

(2)證明:在BA邊上截取BG=BE,連接GE,

∵∠B=90°,BG=BE,∴∠BGE=45°。∴∠AGE=135°。

∵CP平分外角,∴∠DCP=45°!唷螮CP=135°。

∴∠AGE=∠ECP。

∵AB=CB,BG=BE,

∴AB﹣BG=BC﹣BE,即:AG=CE。

又∠GAE=∠CEP,

∵在△AGE和△ECP中,∠AGE=∠ECP,AG=CE,∠GAE=∠CEP,

∴△AGE≌△ECP(ASA)。

∴AE=EP。

(3)存在。證明如下:

如圖,作DM⊥AE于AB交于點(diǎn)M,則有:DM∥EP,

連接ME、DP,

∵在△ADM與△BAE中,

AD=BA,∠ADM=∠BAE,∠DAM=∠ABE,

∴△ADM≌△BAE(AAS)!郙D=AE。

∵由(2)AE=EP,∴MD=EP。∴MDEP。

∴四邊形DMEP為平行四邊形。

【解析】

試題分析:(1)由正方形的性質(zhì)可得:∠B=∠C=90°,由同角的余角相等,可證得:∠BAE=∠CEF,根據(jù)同角的正弦值相等即可解答:

(2)在BA邊上截取BG=BE,連接GE,根據(jù)角角之間的關(guān)系得到∠AGE=∠ECP,由AB=CB,BG=BE,得AG=EC,結(jié)合∠GAE=∠CEP,證明△AKE≌△ECP,于是結(jié)論得出。

(3)作DM⊥AE于AB交于點(diǎn)M,連接ME、DP,易得出DM∥EP,由已知條件證明△ADM≌△BAE,進(jìn)而證明MD=EP,四邊形DMEP是平行四邊形即可證出!

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,如果邊長為1的正六邊形ABCDEF繞著頂點(diǎn)A順時(shí)針旋轉(zhuǎn)60°后與正六邊形AGHMNP重合,那么點(diǎn)B的對應(yīng)點(diǎn)是點(diǎn)
 
,點(diǎn)E在整個(gè)旋轉(zhuǎn)過程中,所經(jīng)過的路徑長為
 
 (結(jié)果保留π).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,在邊長為a的正△ABC中,分別以A,B,C點(diǎn)為圓心,
1
2
a
長為半徑作
DE
,
EF
,
FD
,求陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,將邊長為3的正六邊形A1A2A3A4A5A6,在直線l上由圖1的位置按順時(shí)針方向向右作無滑動(dòng)滾動(dòng),當(dāng)A1第一次滾動(dòng)到圖2位置時(shí),頂點(diǎn)A1所經(jīng)過的路徑的長為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知:如圖,在邊長為a的正△ABC中,分別以A,B,C點(diǎn)為圓心,數(shù)學(xué)公式長為半徑作數(shù)學(xué)公式,數(shù)學(xué)公式數(shù)學(xué)公式,求陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:初三數(shù)學(xué)圓及旋轉(zhuǎn)題庫 第8講:弧長和扇形面積(解析版) 題型:解答題

已知:如圖,在邊長為a的正△ABC中,分別以A,B,C點(diǎn)為圓心,長為半徑作,,,求陰影部分的面積.

查看答案和解析>>

同步練習(xí)冊答案