【題目】如圖,點(diǎn)A是反比例函數(shù)y=(x0)圖象上一點(diǎn),直線(xiàn)y=kx+b過(guò)點(diǎn)A并且與兩坐標(biāo)軸分別交于點(diǎn)B,C,過(guò)點(diǎn)AADx軸,垂足為D,連接DC,若△BOC的面積是4,則△DOC的面積是______

【答案】2﹣2.

【解析】

先用三角形BOC的面積得出k=①,再判斷出BOC∽△BDA,得出a2k+ab=4②,聯(lián)立①②求出ab,即可得出結(jié)論.

設(shè)A(a,)(a>0),

AD=,OD=a,

∵直線(xiàn)y=kx+b過(guò)點(diǎn)A并且與兩坐標(biāo)軸分別交于點(diǎn)B,C,

C(0,b),B(﹣,0),

∵△BOC的面積是4,

SBOC=OB×OC=××b=4,

b2=8k,

k=

ADx軸,

OCAD,

∴△BOC∽△BDA,

,

,

a2k+ab=4

聯(lián)立①②得,ab=﹣4﹣4(舍)或ab=4﹣4,

SDOC=ODOC=ab=2﹣2.

故答案為:2﹣2.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知P(3,3),點(diǎn)B、A分別在x軸正半軸和y軸正半軸上,∠APB90°,則OAOB________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我們定義:如果一個(gè)三角形一條邊上的高等于這條邊,那么這個(gè)三角形叫做等高底三角形,這條邊叫做這個(gè)三角形的等底”.

(1)概念理解:

如圖1,在ABC中,AC=6,BC=3,ACB=30°,試判斷ABC是否是等高底三角形,請(qǐng)說(shuō)明理由.

(2)問(wèn)題探究:

如圖2,ABC等高底三角形,BC等底,作ABC關(guān)于BC所在直線(xiàn)的對(duì)稱(chēng)圖形得到A'BC,連結(jié)AA′交直線(xiàn)BC于點(diǎn)D.若點(diǎn)BAA′C的重心,求的值.

(3)應(yīng)用拓展:

如圖3,已知l1l2,l1l2之間的距離為2.“等高底ABC等底”BC在直線(xiàn)l1上,點(diǎn)A在直線(xiàn)l2上,有一邊的長(zhǎng)是BC倍.將ABC繞點(diǎn)C按順時(shí)針?lè)较蛐D(zhuǎn)45°得到A'B'C,A′C所在直線(xiàn)交l2于點(diǎn)D.求CD的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一個(gè)商人要建一個(gè)矩形的倉(cāng)庫(kù),倉(cāng)庫(kù)的兩邊是住房墻,另外兩邊用長(zhǎng)的建筑材料圍成,且倉(cāng)庫(kù)的面積為

求這矩形倉(cāng)庫(kù)的長(zhǎng);

有規(guī)格為(單位:)的地板磚單價(jià)分別為/塊和/塊,若只選其中一種地板磚都恰好能鋪滿(mǎn)倉(cāng)庫(kù)的矩形地面(不計(jì)縫隙),用哪一種規(guī)格的地板磚費(fèi)用較少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某市出租車(chē)計(jì)費(fèi)辦法如圖所示.根據(jù)圖象信息,下列說(shuō)法錯(cuò)誤的是( 。

A. 出租車(chē)起步價(jià)是10

B. 3千米內(nèi)只收起步價(jià)

C. 超過(guò)3千米部分(x3)每千米收3

D. 超過(guò)3千米時(shí)(x3)所需費(fèi)用yx之間的函數(shù)關(guān)系式是y=2x+4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABC中,AD平分∠BAC,DGBC且平分BC,DEABE,DFACF

1)說(shuō)明BE=CF的理由;

2)如果AB=5,AC=3,求AEBE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,等腰ABC中,AB=AC,∠ACB=72°,

1)若BDACD,求∠ABD的度數(shù);

2)若CE平分∠ACB,求證:AE=BC

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABC的面積為3,BDDC21EAC的中點(diǎn),ADBE相交于點(diǎn)P,那么四邊形PDCE的面積為( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知△ABN△ACM位置如圖所示,AB=ACAD=AE,∠1=∠2

1)求證:BD=CE;

2)求證:∠M=∠N

查看答案和解析>>

同步練習(xí)冊(cè)答案