【題目】如圖,矩形的頂點(diǎn)、分別在、軸的正半軸上,點(diǎn)為對(duì)角線的中點(diǎn),反比例函數(shù)在第一象限內(nèi)的圖象經(jīng)過(guò)點(diǎn),且與、分別交于、兩點(diǎn),若四邊形的面積為,則的值為________.
【答案】
【解析】
根據(jù)反比例函數(shù)圖象上的點(diǎn)E、F、D入手,分別找出△OCF、△OAE、矩形OABC的面積與|k|的關(guān)系,列出等式求出k值.
解:連接OF,EO,
∵點(diǎn)D為對(duì)角線OB的中點(diǎn),四邊形BEDF的面積為1,
∴S△BDF=S△ODF,S△BDE=S△ODE,
∴四邊形FOED的面積為1.
由題意得:E、F、D位于反比例函數(shù)圖象上,則S△OCF=,S△OAE=,
過(guò)點(diǎn)D作DG⊥y軸于點(diǎn)G,作DN⊥x軸于點(diǎn)N,則S矩形ONDG=k,
∵D為矩形ABCO對(duì)角線的交點(diǎn),則S矩形ABCO=4S矩形ONDG=4k,
由于函數(shù)圖象在第一象限,k>0,則++2=4k,
解得:k=.
故答案為:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,點(diǎn)為坐標(biāo)原點(diǎn),已知點(diǎn),將繞坐標(biāo)原點(diǎn)旋轉(zhuǎn)90°到,則點(diǎn)的坐標(biāo)是__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四邊形中,,,在,上分別找一點(diǎn),,使的周長(zhǎng)最小,則的度數(shù)為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖(1),一架云梯AB斜靠在一豎直的墻上,云梯的頂端A距地面15米,梯子的長(zhǎng)度比梯子底端B離墻的距離大5米.
(1)這個(gè)云梯的底端B離墻多遠(yuǎn)?
(2)如圖(2),如果梯子的頂端下滑了8m(AC的長(zhǎng)),那么梯子的底部在水平方向右滑動(dòng)了多少米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,有下列5個(gè)結(jié)論:①abc>0;②b<a+c;③4a-2b+c>0;④2c<3b;⑤當(dāng)m≤x≤m+1時(shí),函數(shù)的最大值為a+b+c,則0≤m≤1;其中正確的結(jié)論有( 。
A. 2 個(gè) B. 3 個(gè) C. 4 個(gè) D. 5 個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,點(diǎn)A(0,3),點(diǎn)B(-1,0),點(diǎn)D(2,0),DE⊥x軸且∠BED=∠ABD,延長(zhǎng)AE交x軸于點(diǎn)F.
(1)求證:∠BAE=∠BEA;
(2)求點(diǎn)F的坐標(biāo);
(3)如圖2,若點(diǎn)Q(m,-1)在第四象限,點(diǎn)M在y軸的正半軸上,∠MEQ=∠OAF,設(shè)AM-MQ=n,求m與n的數(shù)量關(guān)系,并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù) y=nx+2(n≠0)的圖像與反比例函數(shù) y (m≠0)在第一象限內(nèi)的圖像交于點(diǎn) A,與 x 軸交于點(diǎn) B,線段 OA=5,C 為 x 軸正半軸上一點(diǎn),且 sin AOC .
(1)求一次函數(shù)和反比例函數(shù)的解析式;
(2)求△ AOB 的面積;
(3)請(qǐng)直接寫出不等式 nx 2 的解.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD中,∠A=90°,AB=12,AD=5,點(diǎn)M、N分別為線段BC、AB上的動(dòng)點(diǎn)(含端點(diǎn),但點(diǎn)M不與點(diǎn)B重合),點(diǎn)E、F分別為DM、MN的中點(diǎn),則EF長(zhǎng)度的可能為( 。
A.2B.5C.7D.9
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,邊長(zhǎng)為1的正方形ABCD的對(duì)角線交于點(diǎn)O,點(diǎn)E是邊AB上一動(dòng)點(diǎn),點(diǎn)F在邊BC上,且滿足OE⊥OF,在點(diǎn)E由A運(yùn)動(dòng)到B的過(guò)程中,以下結(jié)論正確的個(gè)數(shù)為( )
①線段OE的大小先變小后變大;②線段EF的大小先變大后變小;③四邊形OEBF的面積先變大后變小.
A.0B.1C.2D.3
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com