【題目】探索題:

x1)(x1)=x1

x1)(xx1)=x1

x1)(xxx1)=x1

x1)(x xxx1)=x1

1)觀察以上各式并猜想:

①(x1)(xxx xxx1)=     ;

②(x1)(xxxxxx1)=     ;

2)請(qǐng)利用上面的結(jié)論計(jì)算:

①(-2+(-2+(-2+(-2)+1

②若 xxxxx10,求 x的值.

【答案】1)①x7-1,②xn+1-1;(2)①,②1

【解析】

1)①②根據(jù)已知式子進(jìn)行探尋規(guī)律即可;
2)①將原始乘以(-2-1)后除以(-2-1),再運(yùn)用公式計(jì)算即可;
②將原始乘以(x-1)后除以(x-1),再運(yùn)用公式計(jì)算即可.

1)①(x-1)(x6+x5+x4+x3+x2+x+1=x7-1,
②(x-1)(xn+xn-1+xn-2+…+x3+x2+x+1=xn+1-1
故答案為x7-1xn+1-1;
2)①(-250+-249+-248+…+-2+1=
=-2-1×[-250+-249+-248+…+-2+1]÷-2-1
=[-251-1]÷-3
=-251-1÷-3
= ,
x1007+x1006+…+x3+x2+x+1
=x-1x1007+x1006+…+x3+x2+x+1÷x-1
=x1008-1÷x-1),
x1008-1=0,
x1008=1,
x3024=x10083=1

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,三角形△ABC為等腰直角三角形,AC=BC,BCx軸于點(diǎn)D.

(1)A(-4,0),C(0,2),求點(diǎn)B的坐標(biāo);

(2)若∠EDB=ADC,問(wèn)∠ADE與∠CAD滿(mǎn)足怎樣的關(guān)系?并證明.

(3)AD平分∠BACA(-4,0)D(m,0),B的縱坐標(biāo)為n,試探究m、n之間滿(mǎn)足怎樣的關(guān)系?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,已知∠B=∠C90°AM平分∠DAB,DM平分∠ADC.

(1)求證:MBC的中點(diǎn).

(2) 求證:ADABCD.

(3)SAMD=______S四邊形ABCD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知⊙OABC的外接圓,且AB=BC=CD,ABCD,連接BD.

(1)求證:BD是⊙O的切線(xiàn);

(2)若AB=10,cosBAC=,求BD的長(zhǎng)及⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某興趣小組為了了解本校男生參加課外體育鍛煉情況,隨機(jī)抽取本校300名男生進(jìn)行了問(wèn)卷調(diào)查,統(tǒng)計(jì)整理并繪制了如圖兩幅尚不完整的統(tǒng)計(jì)圖.請(qǐng)根據(jù)以上信息解答下列問(wèn)題:

①課外體育鍛煉情況扇形統(tǒng)計(jì)圖中,經(jīng)常參加所對(duì)應(yīng)的圓心角的度數(shù)為_________.

②請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖.

③該校共有1500名男生,請(qǐng)估計(jì)全校男生中經(jīng)常參加課外體育鍛煉并且最喜歡的項(xiàng)目是籃球的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系中,點(diǎn)A坐標(biāo)為(2,0),點(diǎn)Bx軸負(fù)半軸上,Cy軸正半軸上,∠ACB=90°,∠ABC=30°.

(1)求點(diǎn)B坐標(biāo);

(2)如圖2,點(diǎn)PB出發(fā),沿線(xiàn)段BC運(yùn)動(dòng),點(diǎn)P運(yùn)動(dòng)速度為每秒2個(gè)單位長(zhǎng)度,設(shè)運(yùn)動(dòng)時(shí)間為t秒,用含t的式子表示三角形△OBP的面積S.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】規(guī)定:四條邊對(duì)應(yīng)相等,四個(gè)角對(duì)應(yīng)相等的兩個(gè)四邊形全等.某學(xué)習(xí)小組在研究后發(fā)現(xiàn)判定兩個(gè)四邊形全等需要五組對(duì)應(yīng)條件,于是把五組條件進(jìn)行分類(lèi)研究,并且針對(duì)二條邊和三個(gè)角對(duì)應(yīng)相等類(lèi)型進(jìn)行研究提出以下幾種可能:

① AB=A1B1,AD=A1D1,∠A=∠A1,∠B=∠B1,∠C=∠C1

② AB=A1B1,AD=A1D1,∠A=∠A1,∠B=∠B1,∠D=∠D1

③ AB=A1B1,AD=A1D1,∠B=∠B1,∠C=∠C1,∠D=∠D1;

④ AB=A1B1,CD=C1D1,∠A=∠A1,∠B=∠B1,∠C=∠C1

其中能判定四邊形ABCD和四邊形A1B1C1D1全等有( )個(gè)

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD中,AB=AD=CD,以AB為直徑的⊙O經(jīng)過(guò)點(diǎn)C,連接AC,OD交于點(diǎn)E.

(1)證明:ODBC;

(2)若tanABC=2,證明:DA與⊙O相切;

(3)在(2)條件下,連接BD交于⊙O于點(diǎn)F,連接EF,若BC=1,求EF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線(xiàn)AB、CD相交于點(diǎn)O.已知∠BOD=75°OE把∠AOC分成兩個(gè)角,且∠AOE=EOC

1)求∠AOE的度數(shù);

2)將射線(xiàn)OE繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)°α360°)到OF

①如圖2,當(dāng)OF平分∠BOE時(shí),求∠DOF的度數(shù);

②若∠AOF=120°時(shí),直接寫(xiě)出的度數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案