【題目】1、圖2分別是8×8的網(wǎng)格,網(wǎng)格中每個小正方形的邊長均為1,線段AB的端點在小正方形的頂點上,請在圖1、圖2中各畫一個圖形,分別滿足以下要求:

1)在圖1中畫一個以線段AB為一邊的正方形,并求出此正方形的面積;(所畫正方形各頂點必須在小正方形的頂點上)

2)在圖2中畫一個以線段AB為一邊的等腰三角形,所畫等腰三角形各頂點必須在小正方形的頂點上,且所畫等腰三角形的面積為12

1 2 備用圖

【答案】1)圖見解析;此正方形的面積為25;(2)圖見解析.

【解析】

1)根據(jù)正方形的性質(zhì)作圖,利用勾股定理求出AB即可得到面積;

2)根據(jù)等腰三角形的性質(zhì)和三角形的面積為12作圖即可.

解:(1)如圖所示:正方形ABCD即為所求,

由勾股定理可知AB,

∴此正方形的面積=AB225

2)如圖所示:△ABC即為所求.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】某商店從廠家選購甲、乙兩種商品,乙商品每件進價比甲商品每件進價少20元,若購進甲商品5件和乙商品4件共需要1000元;

(1)求甲、乙兩種商品每件的進價分別是多少元?

(2)若甲種商品的售價為每件145元,乙種商品的售價為每件120元,該商店準備購進甲、乙兩種商品共40件,且這兩種商品全部售出后總利潤不少于870元,則甲種商品至少可購進多少件?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在⊙O中,AB是⊙O的直徑,F是弦AD的中點,連結(jié)OF并延長OF交⊙O于點E,連結(jié)BEAD于點G,延長AD至點C,使得GCBC,連結(jié)BC

1)求證:BC是⊙O的切線.

2)⊙O的半徑為10,sinA,求EG的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖RtABC中,∠ACB90°,∠B30°,AC1,且AC在直線l上,將△ABC繞點A順時針旋轉(zhuǎn)到①,可得到點P1,此時AP12;將位置①的三角形繞點P1順時針旋轉(zhuǎn)到位置②,可得到點P2,此時AP22+;將位置②的三角形繞點P2順時針旋轉(zhuǎn)到位置③,可得到點P3,此時AP33+按此規(guī)律繼續(xù)旋轉(zhuǎn),直到點P2020為止,則AP2020等于_______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小亮一家在一湖泊中游玩,湖泊中有一孤島,媽媽在孤島P處觀看小亮與爸爸在湖中劃船(如圖所示).小船從P處出發(fā),沿北偏東60°方向劃行200米到A處,接著向正南方向劃行一段時間到B處.在B處小亮觀測到媽媽所在的P處在北偏西37°的方向上,這時小亮與媽媽相距多少米(精確到1米)?

(參考數(shù)據(jù):sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,≈1.41,≈1.73

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列說法正確的是(

A.五張完全相同的卡片上,分別畫有圓、平行四邊形、等邊三角形、角、線段,現(xiàn)從中隨機抽取一張,恰好抽到軸對稱圖形的概率是

B.事件“任意畫一個多邊形,其外角和是”是必然事件

C.一個盒子中有白球個,紅球個,黑球(每個除了顏色外都相同).如果從中任取一個球,取得的是紅球的概率與不是紅球的概率相同,那么的差是

D.事件“把個球放入三個抽屜中,其中一個抽屜中至少有個球”是隨機事件

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在菱形中,,點分別是線段上的動點(不與端點重合),且,相交于點.給出如下幾個結(jié)論:

平分;

③若,則

其中正確的結(jié)論是_____________(填寫所有正確結(jié)論的序號)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,點Ax軸正半軸上,點By軸正半軸上,O為坐標原點,OAOB1,過點OOM1AB于點M1;過點M1M1A1OA于點A1:過點A1A1M2AB于點M2;過點M2M2A2OA于點A2以此類推,點M2019的坐標為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】同時擲兩個質(zhì)地均勻的骰子,觀察向上一面的點數(shù),兩個骰子的點數(shù)相同的概率是(

A.B.C.D.

查看答案和解析>>

同步練習冊答案