【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=a1(x﹣2)2+2與y=a2(x﹣2)2﹣3的頂點分別為A,B,與x軸分別交于點O,C,D,E.若點D的坐標(biāo)為(﹣1,0),則△ADE與△BOC的面積比為 .
【答案】1
【解析】解:∵拋物線y=a1(x﹣2)2+2經(jīng)過點(0,0),
∴0=4a1+2,
∴a1=﹣ ,
∴拋物線解析式為y=﹣ x2+2x,
∴點C坐標(biāo)(4,0),A(2,2)
∵拋物線y=a2(x﹣2)2﹣3經(jīng)過點(﹣1,0),
∴0=9a2﹣3,
∴a2= ,
∴拋物線解析式為y= x2﹣ x﹣ ,
∴點E坐標(biāo)(5,0),B(2,﹣3)
∴S△ADE= ×6×2=6,S△OBC= ×4×3=6,
∴△ADE與△BOC的面積比為為1.
所以答案是1.
【考點精析】通過靈活運用拋物線與坐標(biāo)軸的交點,掌握一元二次方程的解是其對應(yīng)的二次函數(shù)的圖像與x軸的交點坐標(biāo).因此一元二次方程中的b2-4ac,在二次函數(shù)中表示圖像與x軸是否有交點.當(dāng)b2-4ac>0時,圖像與x軸有兩個交點;當(dāng)b2-4ac=0時,圖像與x軸有一個交點;當(dāng)b2-4ac<0時,圖像與x軸沒有交點.即可以解答此題.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】給下列證明過程填寫理由.
如圖,CD⊥AB于D,點F是BC上任意一點,EF⊥AB于E,∠1=∠2,求證:∠ACB=∠3.
請閱讀下面解答過程,并補(bǔ)全所有內(nèi)容.
解:∵CD⊥AB,EF⊥AB(已知)
∴∠BEF=∠BDC=90°( )
∴EF∥DC( )
∴∠2=________( )
又∵∠2=∠1(已知)
∴∠1=_______(等量代換)
∴DG∥BC( )
∴∠3=________( )
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)代互聯(lián)網(wǎng)技術(shù)的廣泛應(yīng)用,催生了快遞行業(yè)的高速發(fā)展.小明計劃給朋友快遞一部分物品,經(jīng)了解有甲、乙兩家快遞公司比較合適.甲公司表示:快遞物品不超過1千克的,按每千克22元收費;超過1千克,超過的部分按每千克15元收費.乙公司表示:按每千克16元收費,另加包裝費3元.設(shè)小明快遞物品x千克.
(1)請分別寫出甲、乙兩家快遞公司快遞該物品的費用y(元)與x(千克)之間的函數(shù)關(guān)系式;
(2)小明選擇哪家快遞公司更省錢?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在8×8的正方形網(wǎng)格中,△ABC的頂點和線段EF的端點都在邊長為1的小正方形的格點上.請你在圖中找出一點D(僅一個點即可),連結(jié)DE,DF,使△DEF與△ABC全等,并給予證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】平行四邊形ABCD中,對角線AC、BD交于點O(如圖),則圖中全等三角形的對數(shù)為( 。
A. 2 B. 3 C. 4 D. 5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】探究與發(fā)現(xiàn):如圖1所示的圖形,像我們常見的學(xué)習(xí)用品﹣﹣圓規(guī).我們不妨把這樣圖形叫做“規(guī)形圖”.
(1)觀察“規(guī)形圖”,試探究∠BDC與∠A、∠B、∠C之間的關(guān)系,并說明理由;
(2)請你直接利用以上結(jié)論,解決以下三個問題:
①如圖2,把一塊三角尺XYZ放置在△ABC上,使三角尺的兩條直角邊XY、XZ恰好經(jīng)過點B、C,∠A=40°,則∠ABX+∠ACX= °;
②如圖3,DC平分∠ADB,EC平分∠AEB,若∠DAE=40°,∠DBE=130°,求∠DCE的度數(shù);
③如圖4,∠ABD,∠ACD的10等分線相交于點G1、G2…、G9,若∠BDC=133°,∠BG1C=70°,求∠A的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖1,點P是平行四邊形ABCD對角線AC、BD的交點,若S△PAB=S1,S△PBC=S2,S△PCD=S3,S△PAD=S4則S1、S2、S3、S4的關(guān)系為S1=S2=S3=S4.請你說明理由;
(2)變式1:如圖2,點P是平行四邊形ABCD內(nèi)一點,連接PA、PB、PC、PD.若S△PAB=S1,S△PBC=S2,S△PCD=S3,S△PAD=S4,寫出S1、S2、S3、S4的關(guān)系式;
(3)變式2:如圖3,點P是四邊形ABCD對角線AC、BD的交點若S△PAB=S1,S△PBC=S2,S△PCD=S3,S△PAD=S4,寫出S1、S2、S3、S4的關(guān)系式.請你說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AD是△ABC的角平分線,DF⊥AB,垂足為F,DE=DG,△ADG和△AED的面積分別為40和28,則△EDF的面積為( 。
A. 12 B. 6 C. 7 D. 8
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com