【題目】操作:小明準(zhǔn)備制作棱長(zhǎng)為1cm的正方體紙盒,現(xiàn)選用一些廢棄的圓形紙片進(jìn)行如下設(shè)計(jì):

說(shuō)明:方案一:圖形中的圓過(guò)點(diǎn)A、B、C;

方案二:直角三角形的兩直角邊與展開(kāi)圖左下角的正方形邊重合,斜邊經(jīng)過(guò)兩個(gè)正方形的頂點(diǎn).

紙片利用率=×100%

發(fā)現(xiàn):(1)方案一中的點(diǎn)A、B恰好為該圓一直徑的兩個(gè)端點(diǎn).

你認(rèn)為小明的這個(gè)發(fā)現(xiàn)是否正確,請(qǐng)說(shuō)明理由.

2)小明通過(guò)計(jì)算,發(fā)現(xiàn)方案一中紙片的利用率僅約為38.2%

請(qǐng)幫忙計(jì)算方案二的利用率,并寫(xiě)出求解過(guò)程.

探究:

3)小明感覺(jué)上面兩個(gè)方案的利用率均偏低,又進(jìn)行了新的設(shè)計(jì)(方案三),請(qǐng)直接寫(xiě)出方案三的利用率.

【答案】見(jiàn)解析

【解析】

說(shuō)明:方案三中的每條邊均過(guò)其中兩個(gè)正方形的頂點(diǎn).

解:發(fā)現(xiàn):(1)小明的這個(gè)發(fā)現(xiàn)正確.

理由:

解法一:如圖一:連接ACBC、AB,

∵AC=BC=,AB=

∴AC2+BC2=AB2

∴∠BCA=90°,

∴AB為該圓的直徑.

解法二:如圖二:連接AC、BC、AB

易證△AMC≌△BNC

∴∠ACM=∠CBN

∵∠BCN+∠CBN=90°,

∴∠BCN+∠ACM=90°,

∠BCA=90°,

∴AB為該圓的直徑.

2)如圖三:∵DE=FH,DE∥FH

∴∠AED=∠EFH,

∵∠ADE=∠EHF=90°,

∴△ADE≌△EHFASA),

∴AD=EH=1

∵DE∥BC,

∴△ADE∽△ACB,

=,

=,

∴BC=8

∴SACB=16

該方案紙片利用率=×100%=×100%=37.5%;

探究:

3)過(guò)點(diǎn)CCD⊥EFD,過(guò)點(diǎn)GGH∥AC,交BC于點(diǎn)H,

設(shè)AP=a,

∵PQ∥EK

易得△APQ∽△KQE,△CEF是等腰三角形,△GHL是等腰三角形,

∴APAQ=QKEK=12,

∴AQ=2a,PQ=a

∴EQ=5a,

∵ECED=QEQK

∴EC=a,

PG=5a+a=a,GL=a,

∴GH=a,

解得:GB=a,

∴AB=aAC=a,

∴SABC=×AB×AC=a2

S展開(kāi)圖面積=6×5a2=30a2,

該方案紙片利用率=×100%=×100%=49.86%

1)連接ACBC、AB,由AC=BC=,AB=,根據(jù)勾股定理的逆定理,即可求得∠BAC=90°,又由90°的圓周角所對(duì)的弦是直徑,則可證得AB為該圓的直徑;

2)首先證得△ADE≌△EHF△ADE∽△ACB,即可求得ADBC的長(zhǎng),求得△ABC的面積,即可求得該方案紙片利用率;

3)利用方案(2)的方法,分析求解即可求得答案.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,是邊長(zhǎng)為的正方形對(duì)角線上一動(dòng)點(diǎn)(、不重合),點(diǎn)在線段上,且

求證:;②

設(shè),的面積為

求出關(guān)于的函數(shù)關(guān)系式,并寫(xiě)出的取值范圍;

當(dāng)取何值時(shí),取得最大值,并求出這個(gè)最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】將正面分別寫(xiě)著數(shù)字1,2,3的三張卡片(注:這三張卡片的形狀、大小、質(zhì)地,顏色等其他方面完全相同,若背面上放在桌面上,這三張卡片看上去無(wú)任何差別)洗勻后,背面向上放在桌面上,從中先隨機(jī)抽取一張卡片,記該卡片上的數(shù)字為x,再把剩下的兩張卡片洗勻后,背面向上放在桌面上,再?gòu)倪@兩張卡片中隨機(jī)抽取一張卡片,記該卡片上的數(shù)字為y.

(1)用列表法或樹(shù)狀圖法(樹(shù)狀圖也稱樹(shù)形圖)中的一種方法,寫(xiě)出(x,y)所有可能出現(xiàn)的結(jié)果.

(2)求取出的兩張卡片上的數(shù)字之和為偶數(shù)的概率P.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知正三角形ABC的邊長(zhǎng)AB480毫米.一質(zhì)點(diǎn)D從點(diǎn)B出發(fā),沿BA方向,以每秒鐘10毫米的速度向點(diǎn)A運(yùn)動(dòng).

(1)建立合適的直角坐標(biāo)系,用運(yùn)動(dòng)時(shí)間t(秒)表示點(diǎn)D的坐標(biāo);

(2)過(guò)點(diǎn)D在三角形ABC的內(nèi)部作一個(gè)矩形DEFG,其中EFBC邊上,GAC邊上.在圖中找出點(diǎn)D,使矩形DEFG是正方形(要求所表達(dá)的方式能體現(xiàn)出找點(diǎn)D的過(guò)程);

(3)過(guò)點(diǎn)D、B、C作平行四邊形,當(dāng)t為何值時(shí),由點(diǎn)C、B、D、F組成的平行四邊形的面積等于三角形ADC的面積,并求此時(shí)點(diǎn)F的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知一次函數(shù)y=mx+3的圖象經(jīng)過(guò)點(diǎn)A(2,6),B(n,-3).求:

(1)m,n的值;

(2)OAB的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】1)如圖①,,射線在這個(gè)角的內(nèi)部,點(diǎn)分別在的邊、上,且,于點(diǎn)于點(diǎn).求證:;

2)如圖②,點(diǎn)、分別在的邊、上,點(diǎn)都在內(nèi)部的射線上,、分別是、的外角.已知,且.求證:

3)如圖③,在中,,.點(diǎn)在邊上,,點(diǎn)、在線段上,.若的面積為15,求的面積之和.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,等腰△ABC,點(diǎn)D、E、F分別在BCAB、AC上,且∠BAC=ADE=ADF=60°.

1)在圖中找出與∠DAC相等的角,并加以證明;

2)若AB=6BE=m,求:AF(用含m的式子表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知△

1)在圖中用直尺和圓規(guī)作出的平分線和邊的垂直平分線交于點(diǎn)(保留作圖痕跡,不寫(xiě)作法).

2)在(1)的條件下,若點(diǎn)、分別是邊上的點(diǎn),且,連接求證:;

3)如圖,在(1)的條件下,點(diǎn)、分別是、邊上的點(diǎn),且△的周長(zhǎng)等于邊的長(zhǎng),試探究的數(shù)量關(guān)系,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在邊長(zhǎng)為 1 的小正方形組成的網(wǎng)格中,有如圖 所示的 A. B 兩點(diǎn),在格點(diǎn)中任 意放置點(diǎn) C,恰好能使ABC 的面積為 1,則這樣的 C 點(diǎn)有 ( )個(gè)

A. 5 個(gè)B. 6 個(gè)C. 7 個(gè)D. 8 個(gè)

查看答案和解析>>

同步練習(xí)冊(cè)答案