【題目】在一個不透明的口袋里裝有分別標有數(shù)字﹣3、﹣1、0、2的四個小球,除數(shù)字不同外,小球沒有任何區(qū)別,每次實驗先攪拌均勻.

(1)從中任取一球,求抽取的數(shù)字為正數(shù)的概率;

(2)從中任取一球,將球上的數(shù)字記為a,求關于x的一元二次方程ax22ax+a+30有實數(shù)根的概率;

(3)從中任取一球,將球上的數(shù)字作為點的橫坐標,記為x(不放回);再任取一球,將球上的數(shù)字作為點的縱坐標,記為y,試用畫樹狀圖(或列表法)表示出點(x,y)所有可能出現(xiàn)的結果,并求點(xy)落在第二象限內(nèi)的概率.

【答案】1;(2;(3

【解析】

試題(1)四個數(shù)字中正數(shù)有一個,求出所求概率即可;

2)表示出已知方程根的判別式,根據(jù)方程有實數(shù)根求出a的范圍,即可求出所求概率;

3)列表得出所有等可能的情況數(shù),找出點(xy)落在第二象限內(nèi)的情況數(shù),即可求出所求的概率.

試題解析:解:(1)根據(jù)題意得:抽取的數(shù)字為正數(shù)的情況有1個,則P=;

2方程ax2﹣2ax+a+3=0有實數(shù)根,

∴△=4a2﹣4aa+3=﹣12a≥0,且a≠0

解得:a0,

則關于x的一元二次方程ax2﹣2ax+a+3=0有實數(shù)根的概率為;

3)列表如下:


﹣3

﹣1

0

2

﹣3

﹣﹣﹣

﹣1,﹣3

0﹣3

2,﹣3

﹣1

﹣3,﹣1

﹣﹣﹣

0﹣1

2,﹣1

0

﹣30

﹣1,0

﹣﹣﹣

2,0

2

﹣32

﹣1,2

0,2

﹣﹣﹣

所有等可能的情況有12種,其中點(x,y)落在第二象限內(nèi)的情況有2種,

P==

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】在數(shù)學活動課上,老師提出了一個問題:把一副三角尺如圖1擺放,直角三角尺的兩條直角邊分別垂直或平行,60°角的頂點在另一個三角尺的斜邊上移動,在這個運動過程中,有哪些變量,能研究它們之間的關系嗎?

小林選擇了其中一對變量,根據(jù)學習函數(shù)的經(jīng)驗,對它們之間的關系進行了探究.下面是小林的探究過程,請補充完整:

(1)畫出幾何圖形,明確條件和探究對象;

如圖2,在RtABC中,∠C90°,ACBC6cm,D是線段AB上一動點,射線DEBC于點E,∠EDF_____°,射線DF與射線AC交于點F.設BE兩點間的距離為xcm,EF兩點間的距離為ycm

(2)通過取點、畫圖、測量,得到了xy的幾組值,如下表:

x/cm

0

1

2

3

4

5

6

y/cm

6.9

5.3

4.0

3.3

____

4.5

6

(說明:補全表格時相關數(shù)據(jù)保留一位小數(shù))

(3)建立平面直角坐標系,描出以補全后的表中各對對應值為坐標的點,畫出該函數(shù)的圖象;

(4)結合畫出的函數(shù)圖象,解決問題:當△DEF為等邊三角形時,BE的長度約為_____cm

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將ABC沿角平分線BD所在直線翻折,頂點A恰好落在邊BC的中點E處,AE=BD,那么tanABD=(  )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】ABC中,若OBC邊的中點,則必有:AB2+AC2=2AO2+2BO2成立.依據(jù)以上結論,解決如下問題:如圖,在矩形DEFG中,已知DE=4,EF=3,點P在以DE為直徑的半圓上運動,則PF2+PG2的最小值為( 。

A. B. C. 34 D. 10

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】問題提出

(1)如圖①,在ABC中,∠A=120°,AB=AC=5,則ABC的外接圓半徑R的值為

問題探究

(2)如圖②,O的半徑為13,弦AB=24,MAB的中點,P是⊙O上一動點,求PM的最大值.

問題解決

(3)如圖③所示,AB、AC、BC是某新區(qū)的三條規(guī)劃路其中,AB=6km,AC=3km,BAC=60°,BC所對的圓心角為60°.新區(qū)管委會想在BC路邊建物資總站點P,在AB、AC路邊分別建物資分站點E、F.也就是,分別在、線段ABAC上選取點P、E、F.由于總站工作人員每天要將物資在各物資站點間按P→E→F→P的路徑進行運輸,因此,要在各物資站點之間規(guī)劃道路PE、EFFP.為了快捷環(huán)保和節(jié)約成本要使得線段PE、EF、FP之和最短,試求PE+EF+FP的最小值(各物資站點與所在道路之間的距離、路寬均忽略不計).

圖① 圖② 圖③

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,∠ACB=90°,∠ACB與∠CAB的平分線交于點P,PDAB于點D,若△APC△APD的周長差為,四邊形BCPD的周長為12+,則BC等于______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,為了測量小山頂?shù)蔫F塔AB高度,王華和楊麗在平地上的C點處測得A點的仰角為45°,向前走了18m后到達D點,測得A點的仰角為60°,B點的仰角為30°

1)求證:ABBD

2)求證鐵塔AB的高度.(結果精確到0.1米,其中1.41≈1.73

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在直角坐標系中,半徑為1的⊙A圓心與原點O重合,直線l分別交x軸、y軸于點BC,點B的坐標為(6,0),∠ABC60°.

1)若點P是⊙A上的動點,則P到直線BC的最小距離是   

2)若點A從原點O出發(fā),以1個單位/秒的速度沿著線路OBBCCO運動,回到點O停止運動,⊙A隨著點A的運動而移動.設點A運動的時間為t

①求⊙A在整個運動過程中與坐標軸相切時t的取值;

②求⊙A在整個運動過程中所掃過的圖形的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一次函數(shù)yax+b與反比例函數(shù)y的圖象交于A、B兩點,點A坐標為(m,2),點B坐標為(﹣4,n),OAx軸正半軸夾角的正切值為,直線ABy軸于點C,過Cy軸的垂線,交反比例函數(shù)圖象于點D,連接OD、BD

1)求一次函數(shù)與反比例函數(shù)的解析式;

2)求四邊形OCBD的面積.

查看答案和解析>>

同步練習冊答案