【題目】如圖,點O(0,0),A(0,1)是正方形OAA1B的兩個頂點,以OA1對角線為邊作正方形OA1A2B1 , 再以正方形的對角線OA2作正方形OA1A2B1 , …,依此規(guī)律,則點A8的坐標是( )

A.(﹣8,0)
B.(0,8)
C.(0,8
D.(0,16)

【答案】D
【解析】解:根據題意和圖形可看出每經過一次變化,都順時針旋轉45°,邊長都乘以 ,

∵從A到A3經過了3次變化,

∵45°×3=135°,1×( 3=2

∴點A3所在的正方形的邊長為2 ,點A3位置在第四象限.

∴點A3的坐標是(2,﹣2);

可得出:A1點坐標為(1,1),

A2點坐標為(0,2),

A3點坐標為(2,﹣2),

A4點坐標為(0,﹣4),A5點坐標為(﹣4,﹣4),

A6(﹣8,0),A7(﹣8,8),A8(0,16),

故答案為:D.

:計算OA1 長可得為 ,OA2=2, OA3=2......,從而可得A1點坐標為(1,1),A2點坐標為(0,2),A3點坐標為(2,﹣2)A4點坐標為(0,﹣4),A5點坐標為(﹣4,﹣4),A6(﹣8,0),A7(﹣8,8),故而可得A8(0,16),

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】某居民小區(qū)為了綠化小區(qū)環(huán)境,建設和諧家園,準備將一塊周長為76米的長方形空地,設計成長和寬分別相等的9塊小長方形,如圖所示,計劃在空地上種上各種花卉,經市場預測,綠化每平方米空地造價210元,請計算,要完成這塊綠化工程,預計花費多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,折疊長方形紙片ABCD,使點D落在邊BC上的點F處,折痕為AE.已知AB6cm,BC10cm.則EC的長為_____cm

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點A、B在反比例函數(shù) 的圖象上,且點A、B的橫坐標分別為a、2a(a>0),AC⊥x軸,垂足為C,且△AOC的面積為2,

(1)求該反比例函數(shù)的解析式;
(2)求△AOB的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點 E,F ABCD 對角線上兩點,在條件①DEBF;②∠ADE=∠CBF; ③AFCE;④∠AEB=∠CFD 中,添加一個條件,使四邊形 DEBF 是平行四邊形,可添加 的條件是( )

A. ①②③ B. ①②④ C. ①③④ D. ②③④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC中,AE交BC于點D,∠C=∠E,AD:DE=3:5,AE=8,BD=4,求DC的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,△ABC的三個頂點坐標分別為A(﹣2,﹣1),B(﹣1,1),C(0,﹣2).

(1)寫出點B關于坐標原點O對稱的點B1的坐標;
(2)將△ABC繞點C順時針旋轉90°,畫出旋轉后得到的△A1B1C;
(3)求過點B1的正比例函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,直線MN與直線AB、CD分別交于點E、F,∠1與∠2互補.

(1)試判斷直線AB與直線CD的位置關系,并說明理由;

(2)如圖2,∠BEF與∠EFD的角平分線交于點P,EPCD交于點G,點HMN上一點,且GH⊥EG,求證:PF∥GH;

(3)如圖3,在(2)的條件下,連接PH,KGH上一點使∠PHK=∠HPK,作PQ平分∠EPK,問∠HPQ的大小是否發(fā)生變化?若不變,請求出其值;若變化,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】用代數(shù)式表示:

1a,b兩數(shù)的平方和減去它們乘積的2倍;

2a,b兩數(shù)的和的平方減去它們的差的平方;

3)一個兩位數(shù),個位上的數(shù)字為a,十位上的數(shù)字為b,請表示這個兩位數(shù);

4)若a表示三位數(shù),現(xiàn)把2放在它的右邊,得到一個四位數(shù),請表示這個四位數(shù).

查看答案和解析>>

同步練習冊答案