【題目】某地2016年為做好“精準(zhǔn)扶貧”,投入資金1280萬元用于異地安置,并規(guī)劃投入資金逐年增加,2018年在2016年的基礎(chǔ)上增加投入資金1600萬元.
(1)從2016年到2018年,該地投入異地安置資金的年平均增長率為多少?
(2)在2018年異地安置的具體實(shí)施中,該地計(jì)劃投入資金不低于500萬元用于優(yōu)先搬遷租房獎(jiǎng)勵(lì),規(guī)定前800戶(含第800戶)每戶每天獎(jiǎng)勵(lì)10元,800戶以后每戶每天獎(jiǎng)勵(lì)5元,按租房400天計(jì)算,求2018年該地至少有多少戶享受到優(yōu)先搬遷租房獎(jiǎng)勵(lì).
【答案】(1)從2016年到2018年,該地投入異地安置資金的年平均增長率為50%;(2)2018年該地至少有1700戶享受到優(yōu)先搬遷租房獎(jiǎng)勵(lì).
【解析】
(1)設(shè)年平均增長率為x,根據(jù):2016年投入資金×(1+增長率)2=2018年投入資金,列出方程求解可得;
(2)設(shè)2018年該地有a戶享受到優(yōu)先搬遷租房獎(jiǎng)勵(lì),根據(jù):前800戶獲得的獎(jiǎng)勵(lì)總數(shù)+800戶以后獲得的獎(jiǎng)勵(lì)總和≥500萬,列不等式求解可得.
(1)設(shè)該地投入異地安置資金的年平均增長率為x,
根據(jù)題意得:
解得,(不合題意,舍去).
答:從2016年到2018年,該地投入異地安置資金的年平均增長率為50%.
(2)設(shè)2018年該地有a戶享受到優(yōu)先搬遷租房獎(jiǎng)勵(lì),
根據(jù)題意得:,
解得:.
答:2018年該地至少有1700戶享受到優(yōu)先搬遷租房獎(jiǎng)勵(lì).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下列材料,完成任務(wù):
自相似圖形
定義:若某個(gè)圖形可分割為若干個(gè)都與它相似的圖形,則稱這個(gè)圖形是自相似圖形.例如:正方形ABCD中,點(diǎn)E、F、G、H分別是AB、BC、CD、DA邊的中點(diǎn),連接EG,HF交于點(diǎn)O,易知分割成的四個(gè)四邊形AEOH、EBFO、OFCG、HOGD均為正方形,且與原正方形相似,故正方形是自相似圖形.
任務(wù):
(1)圖1中正方形ABCD分割成的四個(gè)小正方形中,每個(gè)正方形與原正方形的相似比為 ;
(2)如圖2,已知△ABC中,∠ACB=90°,AC=4,BC=3,小明發(fā)現(xiàn)△ABC也是“自相似圖形”,他的思路是:過點(diǎn)C作CD⊥AB于點(diǎn)D,則CD將△ABC分割成2個(gè)與它自己相似的小直角三角形.已知△ACD∽△ABC,則△ACD與△ABC的相似比為 ;
(3)現(xiàn)有一個(gè)矩形ABCD是自相似圖形,其中長AD=a,寬AB=b(a>b).
請(qǐng)從下列A、B兩題中任選一條作答:我選擇 題.
A:①如圖3﹣1,若將矩形ABCD縱向分割成兩個(gè)全等矩形,且與原矩形都相似,則a= (用含b的式子表示);
②如圖3﹣2若將矩形ABCD縱向分割成n個(gè)全等矩形,且與原矩形都相似,則a= (用含n,b的式子表示);
B:①如圖4﹣1,若將矩形ABCD先縱向分割出2個(gè)全等矩形,再將剩余的部分橫向分割成3個(gè)全等矩形,且分割得到的矩形與原矩形都相似,則a= (用含b的式子表示);
②如圖4﹣2,若將矩形ABCD先縱向分割出m個(gè)全等矩形,再將剩余的部分橫向分割成n個(gè)全等矩形,且分割得到的矩形與原矩形都相似,則a= (用含m,n,b的式子表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知某市2017年企業(yè)用水量x(噸)與該月應(yīng)交的水費(fèi)y(元)之間的函數(shù)關(guān)系如圖所示.
(1)求y關(guān)于x的函數(shù)關(guān)系式;
(2)若某企業(yè)2017年10月份的水費(fèi)為620元,求該企業(yè)2017年10月份的用水量;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,∠DBC=90°,∠ABD=30°,∠ADB=75°,AC與BD交于點(diǎn)E,若CE=2AE=4,則DC的長為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某工人計(jì)劃加工一批產(chǎn)品,如果每小時(shí)加工產(chǎn)品10個(gè),就可以在預(yù)定時(shí)間完成任務(wù),如果每小時(shí)多加工2個(gè),就可以提前1小時(shí)完成任務(wù).
(1)該產(chǎn)品的預(yù)定加工時(shí)間為幾小時(shí)?
(2)若該產(chǎn)品銷售時(shí)的標(biāo)價(jià)為100元/個(gè),按標(biāo)價(jià)的八折銷售時(shí),每個(gè)仍可以盈利25元,該批產(chǎn)品總成本為多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,在平面直角坐標(biāo)系中,矩形OABC的邊OA、OC分別在x軸的正半軸、y軸的正半軸上,且OA、OC()的長是方程的兩個(gè)根.
(1)如圖,求點(diǎn)A的坐標(biāo);
(2)如圖,將矩形OABC沿某條直線折疊,使點(diǎn)A與點(diǎn)C重合,折痕交CB于點(diǎn)D,交OA于點(diǎn)E.求直線DE的解析式;
(3)在(2)的條件下,點(diǎn)P在直線DE上,在直線AC上是否存在點(diǎn)Q,使以點(diǎn)A、B、P、Q為頂點(diǎn)的四邊形是平行四邊形.若存在,請(qǐng)求出點(diǎn)Q坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù) y=k x+b 與反比例函數(shù) 圖象交于點(diǎn) A (2,m) 和點(diǎn) B(n,-2).
(1) 求此一次函數(shù)解析式及m、n的值;
(2) 結(jié)合圖象求不等式的解集.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩個(gè)工程隊(duì)計(jì)劃修建一條長15千米的鄉(xiāng)村公路,已知甲工程隊(duì)每天比乙工程隊(duì)每天多修路0.5千米,乙工程隊(duì)單獨(dú)完成修路任務(wù)所需天數(shù)是甲工程隊(duì)單獨(dú)完成修路任務(wù)所需天數(shù)的1.5倍.
(1)求甲、乙兩個(gè)工程隊(duì)每天各修路多少千米?
(2)若甲工程隊(duì)每天的修路費(fèi)用為0.5萬元,乙工程隊(duì)每天的修路費(fèi)用為0.4萬元,要使兩個(gè)工程隊(duì)修路總費(fèi)用不超過5.2萬元,甲工程隊(duì)至少修路多少天?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在同一平面內(nèi),兩條直線相交時(shí)最多有1個(gè)交點(diǎn),三條直線相交時(shí)最多有3個(gè)交點(diǎn),四條直線相交時(shí)最多有6個(gè)交點(diǎn),…,那么十條直線相交時(shí)最多有____個(gè)交點(diǎn).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com