△ABC中,AB=AC,∠BAC=90°,AD∥BC,BD=BC,∠DBC=   
【答案】分析:由于D點的位置有兩種可能,因此本題要分情況討論.
解答:解:(1)如圖①;
過A作AE⊥BC于E,過D作DF⊥BC于F,則AE=DF;
∵△BAC是等腰直角三角形,
∴AE=BC;
∵BC=BD,
∴AE=DF=BD;
∴∠DBC=30°;


(2)如圖②;
過A作AE⊥BC于E,過B作BH⊥AD于H,則AE=BH;
同(1),可得∠D=30°,∠DBH=60°.
∵AD∥BC,BH⊥AD,
∴∠HBC=90°;
∴∠DBC=90°+60°=150°.
因此∠DBC的度數(shù)為30°或150°.
點評:此題主要考查的是等腰直角三角形的性質(zhì),要把所有的情況都考慮到,以免漏解,思考全面是正確解答本題的關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,AB=AC,∠A=36°,
(1)用尺規(guī)作圖的方法,過B點作∠ABC的平分線交AC于D(不寫作法,保留作圖痕跡);
(2)求證:BC=BD=AD;
(3)求證:AD2=AC•DC;
(4)設(shè)
CDDA
=x,求x.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

15、如圖,在△ABC中,AB=AC,點D,E在直線BC上運動.如果∠DAE=l05°,△ABD∽△ECA,則∠BAC=
30
°.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)△ABC中,AB=AC,D、E分別是AB、AC的中點,若AB=4,BC=6,則△ADE的周長是
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

13、在△ABC中,AB=AC,BD是△ABC中線,已知△ABD和△BDC的周長之差為6,△ABC的周長是30,求這個等腰三角形的三邊長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在鈍角△ABC中,AB=AC,以BC為直徑作⊙O,⊙O與BA、CA的延長線分別交于D、E兩點精英家教網(wǎng),連接AO、BE、DC.
(1)求證:△ABO∽△CBD;
(2)若AB=2AD,且BC=2,求∠ACB的度數(shù).

查看答案和解析>>

同步練習冊答案