【題目】如圖,已知中,,,,;

請說明的理由;

(2)可以經(jīng)過圖形的變換得到,請你描述這個變換;

的度數(shù).

【答案】(1)詳見解析;(2)繞點順時針旋轉(zhuǎn),可以得到;(3)

【解析】

1)先利用已知條件∠B=E,AB=AE,BC=EF,利用SAS可證△ABC≌△AEF,那么就有∠C=FBAC=EAF,那么∠BACPAF=EAFPAF,即有∠BAE=CAF=25°;

2)通過觀察可知△ABC繞點A順時針旋轉(zhuǎn)25°,可以得到△AEF;

3)由(1)知∠C=F=57°,BAE=CAF=25°,而∠AMB是△ACM的外角根據(jù)三角形外角的性質(zhì)可求∠AMB

1∵∠B=E,AB=AE,BC=EF∴△ABC≌△AEF,∴∠C=FBAC=EAF,∴∠BACPAF=EAFPAF,∴∠BAE=CAF=25°;

2)通過觀察可知△ABC繞點A順時針旋轉(zhuǎn)25°,可以得到△AEF;

3)由(1)知∠C=F=57°,BAE=CAF=25°,∴∠AMB=C+∠CAF=57°+25°=82°.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,△ABC三個頂點的坐標(biāo)分別是A(1,3),B(﹣2,﹣2),C(2,﹣1).

(1)畫出△ABC關(guān)于y軸對稱的△A1B1C1;

(2)寫出點A1,B1,C1的坐標(biāo);

(3)求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若二次函數(shù)的圖象關(guān)于原點成中心對稱,我們就稱其中一個函數(shù)是另一個函數(shù)的中心對稱函數(shù),也稱函數(shù)互為中心對稱函數(shù).

求函數(shù)的中心對稱函數(shù);

如圖,在平面直角坐標(biāo)系xOy中,E,F(xiàn)兩點的坐標(biāo)分別為,二次函數(shù)的圖象經(jīng)過點E和原點O,頂點為已知函數(shù)互為中心對稱函數(shù);

請在圖中作出二次函數(shù)的頂點作圖工具不限,并畫出函數(shù)的大致圖象;

當(dāng)四邊形EPFQ是矩形時,請求出a的值;

已知二次函數(shù)互為中心對稱函數(shù),且的圖象經(jīng)過的頂點當(dāng)時,求代數(shù)式的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)的圖象與軸交于、兩點,與軸交于點,的坐標(biāo)為,且當(dāng)時二次函數(shù)的函數(shù)值相等.

)求實數(shù)、的值.

)如圖,動點、同時從點出發(fā),其中點以每秒個單位長度的速度沿邊向終點運動,點以每秒個單位長度的速度沿射線方向運動,當(dāng)點停止運動時,點隨之停止運動.設(shè)運動時間為秒.連接,將沿翻折,使點落在點處,得到

①是否存在某一時刻,使得為直角三角形?若存在,求出的值;若不存在,請說明理由.

②設(shè)重疊部分的面積為,求關(guān)于的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABEF,則∠A、∠C、∠D、∠E滿足的數(shù)量關(guān)系是( )

A. A+∠C+∠D+∠E360°B. A-∠C+∠D+∠E180°

C. E-∠C+∠D-∠A90°D. A+∠D=∠C+∠E

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,剪兩張對邊平行且寬度相等的紙條隨意交叉疊放在一起,轉(zhuǎn)動其中一張,重合部分構(gòu)成一個四邊形,則下列結(jié)論中不一定成立的是( 。

A. ABC=ADC,BAD=BCD B. AB=BC

C. AB=CD,AD=BC D. DAB+BCD=180°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,反比例y=的圖象與一次函數(shù)y=kx﹣3的圖象在第一象限內(nèi)交于A(4,a).

(1)求一次函數(shù)的解析式;

(2)若直線x=n(0<n<4)與反比例函數(shù)和一次函數(shù)的圖象分別交于點B,C,連接AB,若△ABC是等腰直角三角形,求n的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,中,,已知,相交于點,相交于點,相交于點.

1)如圖,觀察并猜想有怎樣的數(shù)量關(guān)系?并說明理由.

2)箏形的定義:兩組鄰邊分別相等的四邊形叫做箏形. 如上圖,證明四邊形是箏形.

3)如圖,若,其他條件不變,求的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形是正方形,,垂直,點、在一條直線上,且恰好關(guān)于所在直線成軸對稱.已知,正方形邊長為

圖中可以繞點________按________時針方向旋轉(zhuǎn)________后能夠與________重合;

寫出圖中所有形狀、大小都相等的三角形________;

、的代數(shù)式表示的面積.

查看答案和解析>>

同步練習(xí)冊答案