我市高新技術(shù)開發(fā)區(qū)的某公司,用480萬元購得某種產(chǎn)品的生產(chǎn)技術(shù)后,并進(jìn)一步投入資金1520萬元購買生產(chǎn)設(shè)備,進(jìn)行該產(chǎn)品的生產(chǎn)加工,已知生產(chǎn)這種產(chǎn)品每件還需成本費(fèi)40元.經(jīng)過市場(chǎng)調(diào)研發(fā)現(xiàn):該產(chǎn)品的銷售單價(jià),需定在100元到300元之間較為合理.當(dāng)銷售單價(jià)定為100元時(shí),年銷售量為20萬件;當(dāng)銷售單價(jià)超過100元,但不超過200元時(shí),每件新產(chǎn)品的銷售價(jià)格每增加10元,年銷售量將減少0.8萬件;當(dāng)銷售單價(jià)超過200元,但不超過300元時(shí),每件產(chǎn)品的銷售價(jià)格每增加10元,年銷售量將減少1萬件.設(shè)銷售單價(jià)為x(元),年銷售量為y(萬件),年獲利為w(萬元).(年獲利=年銷售額-生產(chǎn)成本-投資成本)
(1)直接寫出y與x之間的函數(shù)關(guān)系式;
(2)求第一年的年獲利w與x間的函數(shù)關(guān)系式,并說明投資的第一年,該公司是盈利還是虧損?若盈利,最大利潤是多少?若虧損,最少虧損是多少?
(3)若該公司希望到第二年底,除去第一年的最大盈利(或最小虧損)后,兩年的總盈利不低于1842元,請(qǐng)你確定此時(shí)銷售單價(jià)的范圍.在此情況下,要使產(chǎn)品銷售量最大,銷售單價(jià)應(yīng)定為多少元?

(1)y=-0.08x+28, 100<x≤200;y=-0.1x+32,200<x≤300.(2) 第一年在100<x≤200注定虧損,x=195時(shí)虧損最少,為78萬元; (3)190元.

解析試題分析:(1)根據(jù)題意列出關(guān)于xy的方程即可;
(2)根據(jù)條件,求出二次函數(shù)解析式,從中找出最值以及相應(yīng)的自變量范圍.
(3)分情況進(jìn)行討論,找出最值以及相應(yīng)的自變量取值范圍.
試題解析::(1)這個(gè)顯然是一個(gè)分段函數(shù),
y=20-=-0.08x+28
100<x≤200,
可見x=200元時(shí),y=28-16=12(萬件),
y=12- =-0.1x+32,200<x≤300.
(2)投資成本為480+1520=2000萬元
y=-0.08x+28,100<x≤200,
w=xy-40y-2000
=(x-40)(-0.08x+28)-2000
=-0.08x2+31.2x-3120
=-0.08(x-195)2-78
可見第一年在100<x≤200注定虧損,x=195時(shí)虧損最少,為78萬元
(3)兩年的總盈利不低于1842萬元,可見第二年至少要盈利1842+78=1920萬元,既然兩年一塊算,第二年我們就不用算投資成本那2000萬元了.
第二年:100<x≤200時(shí),盈利:xy-40y=-0.08(x-195)2+1922≥1920
解不等式得到:190≤x≤200
這時(shí)候再看y=-0.08x+28,可見x=190時(shí),y最大=12.8
所以定價(jià)190元時(shí)候,銷售量最大.
考點(diǎn):二次函數(shù)的應(yīng)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:填空題

點(diǎn)A(2,y1),B(3,y2)是拋物線上的兩點(diǎn),則y1與y2的大小關(guān)系為y1    y2(填“>”“<”或“=”).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,給出以下結(jié)論:①b2>4ac;②abc>0;③2a﹣b=0;④8a+c<0;⑤9a+3b+c<0,其中結(jié)論正確的是   .(填正確結(jié)論的序號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

有下列4個(gè)命題:
①方程的根是
②在△ABC中,∠ACB=90°,CD⊥AB于D.若AD=4,BD=,則CD=3.
③點(diǎn)P(x,y)的坐標(biāo)x,y滿足x2+y2+2x﹣2y+2=0,若點(diǎn)P也在的圖象上,則k=﹣1.
④若實(shí)數(shù)b、c滿足1+b+c>0,1﹣b+c<0,則關(guān)于x的方程x2+bx+c=0一定有兩個(gè)不相等的實(shí)數(shù)根,且較大的實(shí)數(shù)根x0滿足﹣1<x0<1.
上述4個(gè)命題中,真命題的序號(hào)是   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,已知拋物線y=2x2-2與x軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C.
(1)寫出以A,B,C為頂點(diǎn)的三角形面積;
(2)過點(diǎn)E(0,6)且與x軸平行的直線l1與拋物線相交于M、N兩點(diǎn)(點(diǎn)M在點(diǎn)N的左側(cè)),以MN為一邊,拋物線上的任一點(diǎn)P為另一頂點(diǎn)做平行四邊形,當(dāng)平行四邊形的面積為8時(shí),求出點(diǎn)P、N的坐標(biāo);
(3)過點(diǎn)D(m,0)(其中m>1)且與x軸垂直的直線l2上有一點(diǎn)Q(點(diǎn)Q在第一象限),使得以Q,D,B為頂點(diǎn)的三角形和以B,C,O為頂點(diǎn)的三角形相似,求線段QD的長(用含m的代數(shù)式表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,二次函數(shù)y=x2+bx+c經(jīng)過點(diǎn)(-1,0)和點(diǎn)(0,-3).
(1)求二次函數(shù)的表達(dá)式;
(2)如果一次函數(shù)y=4x+m的圖象與二次函數(shù)的圖象有且只有一個(gè)公共點(diǎn),求m的值和該公共點(diǎn)的坐標(biāo);
(3)將二次函數(shù)圖象y軸左側(cè)部分沿y軸翻折,翻折后得到的圖象與原圖象剩余部分組成一個(gè)新的圖象,該圖象記為G,如果直線y=4x+n與圖象G有3個(gè)公共點(diǎn),求n的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

在平面直角坐標(biāo)系中,二次函數(shù)的圖像與軸交于點(diǎn)A,B(點(diǎn)B在點(diǎn)A的左側(cè)),與軸交于點(diǎn)C,過動(dòng)點(diǎn)H(0, )作平行于軸的直線,直線與二次函數(shù)的圖像相交于點(diǎn)D,E.
(1)寫出點(diǎn)A,點(diǎn)B的坐標(biāo);
(2)若,以DE為直徑作⊙Q,當(dāng)⊙Q與軸相切時(shí),求的值;
(3)直線上是否存在一點(diǎn)F,使得△ACF是等腰直角三角形?若存在,求的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

某水果店銷售某中水果,由歷年市場(chǎng)行情可知,從第1月至第12月,這種水果每千克售價(jià)y1(元)與銷售時(shí)間第x月之間存在如圖1(一條線段)的變化趨勢(shì),每千克成本y2(元)與銷售時(shí)間第x月滿足函數(shù)關(guān)系式y(tǒng)2=mx2﹣8mx+n,其變化趨勢(shì)如圖2.

(1)求y2的解析式;
(2)第幾月銷售這種水果,每千克所獲得利潤最大?最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:計(jì)算題

如圖,某公路隧道橫截面為拋物線,其最大高度為6米,底部寬度OM為12米. 現(xiàn)以O(shè)點(diǎn)為原點(diǎn),OM所在直線為x軸建立直角坐標(biāo)系.

【小題1】直接寫出點(diǎn)M及拋物線頂點(diǎn)P的坐標(biāo);
【小題2】求這條拋物線的解析式;
【小題3】若要搭建一個(gè)矩形“支撐架”AD- DC- CB,
使C、D點(diǎn)在拋物線上,A、B點(diǎn)在地面OM上,

查看答案和解析>>

同步練習(xí)冊(cè)答案