【題目】如圖所示,△ABC中,D是BC邊上一點,E是AD的中點,過點A作BC的平行線交CE的延長線于F,且AF=BD,連接BF.

(1)求證:D是BC的中點;

(2)若AB=AC,試判斷四邊形AFBD的形狀,并證明你的結(jié)論.

【答案】(1)證明見解析;(2)四邊形AFBD是矩形.

【解析】

試題分析:(1)根據(jù)兩直線平行,內(nèi)錯角相等求出∠AFE=∠DCE,然后利用“角角邊”證明△AEF和△DEC全等;

(2)由(1)知AF平行等于BD,易證四邊形AFBD是平行四邊形,而AB=AC,AD是中線,利用等腰三角形三線合一定理,可證AD⊥BC,即∠ADB=90°,那么可證四邊形AFBD是矩形.

試題解析:(1)∵AF∥BC,∴∠AFE=∠DCE,∵點E為AD的中點,∴AE=DE,在△AEF和△DEC中,∵∠AFE=DCE,AEF=DEC,AE=DE,∴△AEF≌△DEC(AAS);

(2)若AB=AC,則四邊形AFBD是矩形.理由如下:

∵△AEF≌△DEC,∴AF=CD,∵AF=BD,∴CD=BD;

∵AF∥BD,AF=BD,∴四邊形AFBD是平行四邊形,∵AB=AC,BD=CD,∴∠ADB=90°,∴平行四邊形AFBD是矩形.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,一次函數(shù)的圖象經(jīng)過點A(4,1)與點B(0,5).
(1)求一次函數(shù)的表達式;
(2)若P點為此一次函數(shù)圖象上一點,且SPOB= SAOB , 求P點的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列調(diào)查中,調(diào)查方式選擇正確的是(

A. 為了了解10000個燈泡的使用壽命,選擇全面調(diào)查

B. 為了了解某公園全年的游客流量,選擇抽樣調(diào)查

C. 為了了解生產(chǎn)的50枚炮彈的殺傷半徑,選擇全面調(diào)查

D. 為了了解一批袋裝食品是否有防腐劑,選擇全面調(diào)查

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,以B為圓心,BC長為半徑畫弧,分別交AC,AB于D,E兩點,并連接BD,DE.若∠A=30°,AB=AC,則∠BDE的度數(shù)為何(
A.45
B.52.5
C.67.5
D.75

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點A1,A2,A3…都在x軸上,點B1,B2,B3…都在直線上,△OA1B1,△B1A1A2,△B2B1A2,△B2A2A3,△B3B2A3…都是等腰直角三角形,且OA1=1,則點B2015的坐標(biāo)是(

A.(, B.( C.(, D.(,

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】化簡(﹣2x2y3的結(jié)果是(  )

A.8x6y3B.8x6yC.6x6y3D.6x6y

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知|a|=2,|b|=4, ①若 <0,求a﹣b的值;
②若|a﹣b|=﹣(a﹣b),求a﹣b的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】要反映無錫市一周內(nèi)每天的最高氣溫的變化情況,宜采用 ( )

A. 折線統(tǒng)計圖 B. 扇形統(tǒng)計圖 C. 條形統(tǒng)計圖 D. 頻數(shù)分布直方圖

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某超市用3000元購進某種干果銷售,由于銷售狀況良好,超市又調(diào)撥9000元資金購進該種干果,但這次的進價比第一次的進價提高了20%,購進干果數(shù)量是第一次的2倍還多300千克,如果超市按每千克9元的價格出售,當(dāng)大部分干果售出后,余下的600千克按售價的8折售完.
(1)該種干果的第一次進價是每千克多少元?
(2)超市銷售這種干果共盈利多少元?

查看答案和解析>>

同步練習(xí)冊答案