(2007•荊州)如圖是某只股票從星期一至星期五每天的最高股價(jià)與最低股價(jià)的折線統(tǒng)計(jì)圖,則這五天中最高股價(jià)與最低股價(jià)之差最大的一天是( )

A.星期二
B.星期三
C.星期四
D.星期五
【答案】分析:分析折線圖,計(jì)算每天最高股價(jià)與最低股價(jià)的差,即可作出判斷.
解答:解:星期一的差為10-9=1,星期二為11-9.5=1.5,星期三為11.5-9.7=1.8,星期四為10.5-9.5=1,星期五為10-8.5=1.5,故選B.
點(diǎn)評(píng):本題考查折線統(tǒng)計(jì)圖的運(yùn)用,折線統(tǒng)計(jì)圖表示的是事物的變化情況,如增長(zhǎng)率.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:2007年全國(guó)中考數(shù)學(xué)試題匯編《反比例函數(shù)》(05)(解析版) 題型:解答題

(2007•荊州)如圖,D為反比例函數(shù)y=(k<0)圖象上一點(diǎn),過(guò)D作DC⊥y軸于C,DE⊥x軸于E,一次函數(shù)y=-x+m與y=-x+2的圖象都過(guò)C點(diǎn),與x軸分別交于A、B兩點(diǎn).若梯形DCAE的面積為4,求k的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2009年浙江省溫州市龍港三中一模試卷(解析版) 題型:解答題

(2007•荊州)如圖1,在平面直角坐標(biāo)系中,有一張矩形紙片OABC,已知O(0,0),A(4,0),C(0,3),點(diǎn)P是OA邊上的動(dòng)點(diǎn)(與點(diǎn)O、A不重合).現(xiàn)將△PAB沿PB翻折,得到△PDB;再在OC邊上選取適當(dāng)?shù)狞c(diǎn)E,將△POE沿PE翻折,得到△PFE,并使直線PD、PF重合.
(1)設(shè)P(x,0),E(0,y),求y關(guān)于x的函數(shù)關(guān)系式,并求y的最大值;
(2)如圖2,若翻折后點(diǎn)D落在BC邊上,求過(guò)點(diǎn)P、B、E的拋物線的函數(shù)關(guān)系式;
(3)在(2)的情況下,在該拋物線上是否存在點(diǎn)Q,使△PEQ是以PE為直角邊的直角三角形?若不存在,說(shuō)明理由;若存在,求出點(diǎn)Q的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2009年福建省漳州市高中自主招生四校聯(lián)考數(shù)學(xué)試卷(解析版) 題型:解答題

(2007•荊州)如圖1,在平面直角坐標(biāo)系中,有一張矩形紙片OABC,已知O(0,0),A(4,0),C(0,3),點(diǎn)P是OA邊上的動(dòng)點(diǎn)(與點(diǎn)O、A不重合).現(xiàn)將△PAB沿PB翻折,得到△PDB;再在OC邊上選取適當(dāng)?shù)狞c(diǎn)E,將△POE沿PE翻折,得到△PFE,并使直線PD、PF重合.
(1)設(shè)P(x,0),E(0,y),求y關(guān)于x的函數(shù)關(guān)系式,并求y的最大值;
(2)如圖2,若翻折后點(diǎn)D落在BC邊上,求過(guò)點(diǎn)P、B、E的拋物線的函數(shù)關(guān)系式;
(3)在(2)的情況下,在該拋物線上是否存在點(diǎn)Q,使△PEQ是以PE為直角邊的直角三角形?若不存在,說(shuō)明理由;若存在,求出點(diǎn)Q的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2007年湖北省荊州市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2007•荊州)如圖,D為反比例函數(shù)y=(k<0)圖象上一點(diǎn),過(guò)D作DC⊥y軸于C,DE⊥x軸于E,一次函數(shù)y=-x+m與y=-x+2的圖象都過(guò)C點(diǎn),與x軸分別交于A、B兩點(diǎn).若梯形DCAE的面積為4,求k的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2007年湖北省荊門市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2007•荊州)如圖1,在平面直角坐標(biāo)系中,有一張矩形紙片OABC,已知O(0,0),A(4,0),C(0,3),點(diǎn)P是OA邊上的動(dòng)點(diǎn)(與點(diǎn)O、A不重合).現(xiàn)將△PAB沿PB翻折,得到△PDB;再在OC邊上選取適當(dāng)?shù)狞c(diǎn)E,將△POE沿PE翻折,得到△PFE,并使直線PD、PF重合.
(1)設(shè)P(x,0),E(0,y),求y關(guān)于x的函數(shù)關(guān)系式,并求y的最大值;
(2)如圖2,若翻折后點(diǎn)D落在BC邊上,求過(guò)點(diǎn)P、B、E的拋物線的函數(shù)關(guān)系式;
(3)在(2)的情況下,在該拋物線上是否存在點(diǎn)Q,使△PEQ是以PE為直角邊的直角三角形?若不存在,說(shuō)明理由;若存在,求出點(diǎn)Q的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案