【題目】如圖,在平面直角坐標(biāo)系xOy中,函數(shù)()的圖象經(jīng)過點(diǎn),AB⊥x軸于點(diǎn)B,點(diǎn)C與點(diǎn)A關(guān)于原點(diǎn)O對稱, CD⊥x軸于點(diǎn)D,△ABD的面積為8.
(1)求m,n的值;
(2)若直線(k≠0)經(jīng)過點(diǎn)C,且與x軸,y軸的交點(diǎn)分別為點(diǎn)E,F,當(dāng)時(shí),求點(diǎn)F的坐標(biāo).
【答案】(1)m=8,n=-2;(2) 點(diǎn)F的坐標(biāo)為,
【解析】(1)利用三角形的面積公式構(gòu)建方程求出n,再利用 待定系數(shù)法求出m的的值即可;(2)分兩種情形分別求解如①圖,當(dāng)k<0時(shí),設(shè)直線y=kx+b與x軸,y軸的交點(diǎn)分別為, . ②圖中,當(dāng)k>0時(shí),設(shè)直線y=kx+b與x軸,y軸的交點(diǎn)分別為點(diǎn),.
(1)如圖②
∵ 點(diǎn)A的坐標(biāo)為,點(diǎn)C與點(diǎn)A關(guān)于原點(diǎn)O對稱,
∴ 點(diǎn)C的坐標(biāo)為.
∵ AB⊥x軸于點(diǎn)B,CD⊥x軸于點(diǎn)D,
∴ B,D兩點(diǎn)的坐標(biāo)分別為,.
∵ △ABD的面積為8,,
∴ .
解得 . ∵ 函數(shù)()的圖象經(jīng)過點(diǎn),
∴ .
(2)由(1)得點(diǎn)C的坐標(biāo)為.
① 如圖,當(dāng)時(shí),設(shè)直線與x軸,
y軸的交點(diǎn)分別為點(diǎn),.
由 CD⊥x軸于點(diǎn)D可得CD∥.
∴ △CD∽△ O.
∴ .
∵ ,
∴ .
∴ .
∴ 點(diǎn)的坐標(biāo)為.
②如圖,當(dāng)時(shí),設(shè)直線與x軸,y軸的交點(diǎn)分別為
點(diǎn),.
同理可得CD∥,.
∵ ,
∴ 為線段的中點(diǎn),.
∴ .
∴ 點(diǎn)的坐標(biāo)為.
綜上所述,點(diǎn)F的坐標(biāo)為,.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知甲、乙兩地相距160km,、兩車分別從甲、乙兩地同時(shí)出發(fā),車速度為85km/h,車速度為65km/h.
(1)、兩車同時(shí)同向而行,車在后,經(jīng)過幾小時(shí)車追上車?
(2)、兩車同時(shí)相向而行,經(jīng)過幾小時(shí)兩車相距20km?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知長方形ABCD中,AD=6cm,AB=4cm,點(diǎn)E為AD的中點(diǎn).若點(diǎn)P在線段AB上以1cm/s的速度由點(diǎn)A向點(diǎn)B運(yùn)動(dòng),同時(shí),點(diǎn)Q在線段BC上由點(diǎn)B向點(diǎn)C運(yùn)動(dòng).
(1)若點(diǎn)Q的運(yùn)動(dòng)速度與點(diǎn)P的運(yùn)動(dòng)速度相等,經(jīng)過1秒后,△AEP與△BPQ是否全等,請說明理由,并判斷此時(shí)線段PE和線段PQ的位置關(guān)系;
(2)若點(diǎn)Q的運(yùn)動(dòng)速度與點(diǎn)P的運(yùn)動(dòng)速度相等,運(yùn)動(dòng)時(shí)間為t秒,設(shè)△PEQ的面積為Scm2,請用t的代數(shù)式表示S;
(3)若點(diǎn)Q的運(yùn)動(dòng)速度與點(diǎn)P的運(yùn)動(dòng)速度不相等,當(dāng)點(diǎn)Q的運(yùn)動(dòng)速度為多少時(shí),能夠使△AEP與△BPQ全等?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若拋物線上,它與軸交于,與軸交于、,是拋物線上、之間的一點(diǎn),
(1)當(dāng)時(shí),求拋物線的方程,并求出當(dāng)面積最大時(shí)的的橫坐標(biāo)。
(2)當(dāng)時(shí),求拋物線的方程及的坐標(biāo),并求當(dāng)面積最大時(shí)的橫坐標(biāo)。
(3)根據(jù)(1)、(2)推斷的橫坐標(biāo)與的橫坐標(biāo)有何關(guān)系?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某港口P位于東西方向的海岸線上,“遠(yuǎn)航”號、“海天”號輪船同時(shí)離開港口,各自沿一固定方向航行,“遠(yuǎn)航”號每小時(shí)航行16海里,“海天”號每小時(shí)航行12海里.它們離開港口一個(gè)半小時(shí)后,分別位于點(diǎn)Q、R處,且相距30海里,如果知道“遠(yuǎn)航”號沿北偏東方向航行,請求出“海天”號的航行方向?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,C是圓上一點(diǎn),弦CD⊥AB于點(diǎn)E,且DC=AD.過點(diǎn)A作⊙O的切線,過點(diǎn)C作DA的平行線,兩直線交于點(diǎn)F,FC的延長線交AB的延長線于點(diǎn)G.
(1)求證:FG與⊙O相切;
(2)連接EF,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在等邊三角形ABC中,CD為中線,點(diǎn)Q在線段CD上運(yùn)動(dòng),將線段QA繞點(diǎn)Q順時(shí)針旋轉(zhuǎn),使得點(diǎn)A的對應(yīng)點(diǎn)E落在射線BC上,連接BQ,設(shè)∠DAQ=α
(0°<α<60°且α≠30°).
(1)當(dāng)0°<α<30°時(shí),
①在圖1中依題意畫出圖形,并求∠BQE(用含α的式子表示);
②探究線段CE,AC,CQ之間的數(shù)量關(guān)系,并加以證明;
(2)當(dāng)30°<α<60°時(shí),直接寫出線段CE,AC,CQ之間的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為做好防汛工作,防汛指揮部決定對某水庫的水壩進(jìn)行加高加固,專家提供的方案是:水壩加高2米(即CD=2米),背水坡DE的坡度i=1:1(即DB:EB=1:1),如圖所示,已知AE=4米,∠EAC=130°,求水壩原來的高度BC.(參考數(shù)據(jù):sin50°≈0.77,cos50°≈0.64,tan50°≈1.2)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖,給出下列四個(gè)結(jié)論:①4ac﹣b2<0;②4a+c<2b;③3b+2c<0;④m(am+b)+b<a(m≠﹣1),其中正確結(jié)論的個(gè)數(shù)是(。
A. 4個(gè) B. 3個(gè) C. 2個(gè) D. 1個(gè)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com