【題目】如圖,在銳角△ABC中,AB=4,BC=5,∠ACB=45°,將△ABC繞點B按逆時針方向旋轉(zhuǎn),得到△A1BC1.
(1)如圖1,當點C1在線段CA的延長線上時,求∠CC1A1的度數(shù);
(2)如圖2,連接AA1,CC1.若△ABA1的面積為16,求△CBC1的面積;
(3)如圖3,點E為線段AB中點,點P是線段AC上的動點,在△ABC繞點B按逆時針方向旋轉(zhuǎn)過程中,點P的對應點是點P1,求線段EP1長度的最大值與最小值之和.
【答案】(1)90° (2)25 (3)
【解析】
(1)由旋轉(zhuǎn)的性質(zhì)可得:∠A1C1B=∠ACB=45°,BC=BC1,又由等腰三角形的性質(zhì),即可求得∠CC1A1的度數(shù);
(2)由旋轉(zhuǎn)的性質(zhì)可得:△ABC≌△A1BC1,易證得△ABA1∽△CBC1,利用相似三角形的面積比等于相似比的平方,即可求得△CBC1的面積;
(3)由①當P在AC上運動至垂足點D,△ABC繞點B旋轉(zhuǎn),使點P的對應點P1在線段AB上時,EP1最小;②當P在AC上運動至點C,△ABC繞點B旋轉(zhuǎn),使點P的對應點P1在線段AB的延長線上時,EP1最大,即可求得線段EP1長度的最大值與最小值.
解:(1)由旋轉(zhuǎn)的性質(zhì)可得:∠A1C1B=∠ACB=45°,BC=BC1,
∴∠CC1B=∠C1CB=45°,
∴∠CC1A1=∠CC1B+∠A1C1B=45°+45°=90°;
(2)∵△ABC≌△A1BC1,
∴BA=BA1,BC=BC1,∠ABC=∠A1BC1,
∴,∠ABC+∠ABC1=∠A1BC1+∠ABC1,
∴∠ABA1=∠CBC1,
∴△ABA1∽△CBC1,
∴,
∵S△ABA1=16,
∴S△CBC1=25;
(3)如圖,過點B作BD⊥AC,D為垂足,
∵△ABC為銳角三角形,
∴點D在線段AC上,
在Rt△BCD中,BD=BC×sin45°=;
①當P在AC上運動至BP⊥AC時,△ABC繞點B旋轉(zhuǎn),使點P的對應點P1在線段AB上時,EP1最小,最小值為:EP1=BP1﹣BE=BD﹣BE=﹣2;
②當P在AC上運動至點C,△ABC繞點B旋轉(zhuǎn),使點P的對應點P1在線段AB的延長線上時,EP1最大,最大值為:EP1=BC+BE=2+5=7;
因此,線段EP1長度的最大值與最小值的和為:7+﹣2=.
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,△ABC中,∠C=90°,若AC=6,BC=8,AD平分∠CAB交CB于D.
(1)求CD的長;
(2)如圖2,E是AC上一點,連ED,過D作DE的垂線交AB于F,若ED=DF,求CE的長;
(3)如圖3,在(2)條件下,點P在FD延長線上,過F作ED的平行線QF,連PE、PQ,若∠QPF=2∠PED=2α,PQ=5PD,(QF>PF),求QF.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知△ABC中,以AB為直徑的⊙O交AC于點D,∠CBD=∠A.
(1)求證:BC為⊙O的切線;
(2)若E為中點,BD=12,sin∠BED=,求BE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在一個不透明的盒子里,裝有四個分別標有數(shù)字1,2,3,4的小球,它們的形狀、大小、質(zhì)地等完全相同.小明先從盒子里隨機取出一個小球,記下數(shù)字為m;放回盒子搖勻后,再由小華隨機取出一個小球,記下數(shù)字為n.
(1)用列表法或畫樹狀圖表示出(m,n)的所有可能出現(xiàn)的結(jié)果;
(2)小明認為點(m,n)在一次函數(shù)y=x+2的圖象上的概率一定大于在反比例函數(shù)y=的圖象上的概率,而小華卻認為兩者的概率相同.你贊成誰的觀點?分別求出點(m,n)在兩個函數(shù)圖象上的概率,并說明誰的觀點正確.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,∠MAN=90°,點C在邊AM上,AC=3,點B為邊AN上一動點,連接BC,△A′BC與△ABC關于BC所在直線對稱,點D,E分別為AC,BC的中點,連接DE并延長交A′B所在直線于點F,連接A′E.當△A′EF為直角三角形時,AB的長為__.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知平行四邊形ABCD.
(1)若M,N是BD上兩點,且BM=DN,AC=2OM,求證:四邊形AMCN是矩形;
(2)若∠BAD=120°,CD=4,AB⊥AC,求平行四邊形ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,為⊙的直徑,,為圓上的兩點,,弦,相交于點,
(1)求證:
(2)若,,求⊙的半徑;
(3)在(2)的條件下,過點作⊙的切線,交的延長線于點,過點作交⊙于, 兩點(點在線段上),求的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在菱形ABCD中,AB=AC,點E、F、G分別在邊BC、CD上,BE=CG,AF平分∠EAG,點H是線段AF上一動點(與點A不重合).
(1)求證:△AEH≌△AGH;
(2)當AB=12,BE=4時:
①求△DGH周長的最小值;
②若點O是AC的中點,是否存在直線OH將△ACE分成三角形和四邊形兩部分,其中三角形的面積與四邊形的面積比為1:3.若存在,請求出的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】我國淡水資源短缺問題十分突出,節(jié)約用水已成為各地的一件大事.某校初三學生為了調(diào)查居民用水情況,隨機抽查了某小區(qū)10戶家庭的月用水量,結(jié)果如表所示:
月用水量(t) | 3 | 4 | 5 | 10 |
戶數(shù) | 4 | 2 | 3 | 1 |
這10戶家庭月用水量的平均數(shù)、中位數(shù)及眾數(shù)是( 。
A. 4.5,3,4B. 3,4.5,4C. 4.5,4,3D. 4,4.5,3
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com