【題目】如圖,正方形ABCD的對角線AC,BD交于點O,DE平分交OA于點E,若,則線段OE的長為________.
【答案】2-
【解析】
由正方形的性質可得AB=CD,∠COD=90°,OC=OD,∠ADB=∠ACD=∠CDO=45°,又因DE平分∠ODA,所以∠BDE=∠ADE=22.5°;在△ADE中,根據(jù)三角形的內角和定理可得∠CED=67.5°,所以∠CED=∠CDE=67.5°;根據(jù)等腰三角形的性質可得CD=CE=2;在等腰Rt△COD中,根據(jù)勾股定理求得OC=,由此即可求得OE的長.
∵四邊形ABCD為正方形,
∴AB=CD,∠COD=90°,OC=OD,∠ADB=∠ACD=∠CDO=45°,
∵DE平分,
∴∠BDE=∠ADE=22.5°,
∴∠CDE=∠BDE+∠CDO =67.5°;
在△ADE中,根據(jù)三角形的內角和定理可得∠CED=67.5°,
∴∠CED=∠CDE=67.5°,
∴CD=CE=2,
在等腰Rt△COD中,根據(jù)勾股定理求得OC=,
∴OE=CE-OC=2-.
故答案為:2-.
科目:初中數(shù)學 來源: 題型:
【題目】為解決樓房之間的擋光問題,某地區(qū)規(guī)定:兩幢樓房間的距離至少為40米,中午12時不能擋光.如圖,某舊樓的一樓窗臺高1米,要在此樓正南方40米處再建一幢新樓.已知該地區(qū)冬天中午12時陽光從正南方照射,并且光線與水平線的夾角最小為30°,在不違反規(guī)定的情況下,請問新建樓房最高多少米?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】隨著中國經濟的快速發(fā)展以及科技水平的飛速提高,中國高鐵正迅速崛起.高鐵大大縮短了時空距離,改變了人們的出行方式.如圖,,兩地被大山阻隔,由地到地需要繞行地,若打通穿山隧道,建成,兩地的直達高鐵,可以縮短從地到地的路程.已知:,,公里,求隧道打通后與打通前相比,從地到地的路程將約縮短多少公里?(參考數(shù)據(jù):,)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在一個長方形休閑廣場的四角都設計一塊半徑相同的四分之一圓形的花壇,若圓形的半徑為米,廣場的長為米,寬為米.
(1)請列式表示花壇的面積和廣場空地的面積;
(2)若休閑廣場的長為500米,寬為200米,圓形花壇的半徑為20米,求廣場空地的面積;(計算結果保留;
(3)在(2)的情況下,若取3.14,求休閑廣場的綠化率是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知含字母a,b的代數(shù)式是:3[a2+2(b2+ab﹣2)]﹣3(a2+2b2)﹣4(ab﹣a﹣1)
(1)化簡代數(shù)式;
(2)小紅取a,b互為倒數(shù)的一對數(shù)值代入化簡的代數(shù)式中,恰好計算得代數(shù)式的值等于0,那么小紅所取的字母b的值等于多少?
(3)聰明的小剛從化簡的代數(shù)式中發(fā)現(xiàn),只要字母b取一個固定的數(shù),無論字母a取何數(shù),代數(shù)式的值恒為一個不變的數(shù),那么小剛所取的字母b的值是多少呢?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖(1)△ABC中,H是高AD和BE的交點,且AD=BD.
(1)請你猜想BH和AC的關系,并說明理由;
(2)若將圖(1)中的∠A改成鈍角,請你在圖(2)中畫出該題的圖形,此時(1)中的結論還成立嗎?(不必證明).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點P從(0,3)出發(fā),沿所示的方向運動,每當碰到矩形的邊時反彈,反彈時反射角等于入射角,當點p第2019次碰到矩形的邊時點P的坐標為( 。
A. ( 1,4 )B. ( 5,0 )C. ( 8,3 )D. ( 6,4 )
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】蔬菜公司采購了若干噸的某種蔬菜,計劃加工之后銷售,若單獨進行粗加工,需要20天才能完成;若單獨進行精加工,需要30天才能完成,已知每天單獨粗加工比單獨精加工多生產10噸.
(1)求公司采購了多少噸這種蔬菜?
(2)據(jù)統(tǒng)計,這種蔬菜經粗加工銷售,每噸利潤2000元;經精加工后銷售,每噸利潤漲至2500元.受季節(jié)條件限制,公司必須在24天內全部加工完畢,由于兩種加工方式不能同時進行,公司為盡可能多獲利,安排將部分蔬菜進行精加工后,其余蔬菜進行粗加工,并恰好24天完成,加工的這批蔬菜若全部售出,求公司共獲得多少元的利潤?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com