【題目】如圖,在△ABC中,ABAC14DE是線段AB的垂直平分線.

1)若△EBC的周長(zhǎng)是24,求BC的長(zhǎng);

2)若∠Ax°,求∠EBC的度數(shù)(用含x的代數(shù)式表示).

【答案】110;(2)∠EBC90°x°

【解析】

1)首先根據(jù)線段垂直平分線的性質(zhì)得出EAEB,再由△EBC的周長(zhǎng),即可得出BC;

2)首先由ABAC,∠Ax°,得出∠ABC=∠C180°﹣∠A)=180°),再由EAEB,得出∠EBA=∠Ax°,進(jìn)而得出∠EBC.

1)∵DE是線段AB的垂直平分線,

EAEB

∵△EBC的周長(zhǎng)是24,

BC+EB+EC24

BC+EA+EC24,即BC+AC24

BC24AC241410

2)∵ABAC,∠Ax°

∴∠ABC=∠C180°﹣∠A)=180°x°).

EAEB,

∴∠EBA=∠Ax°,

∴∠EBC=∠ABC﹣∠EBA

180°x°)﹣x°90°x°

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在以點(diǎn)O為原點(diǎn)的直角坐標(biāo)系中,一次函數(shù)y=-x+1的圖象與x軸交于A,與y軸交于點(diǎn)B,點(diǎn)C在第二象限內(nèi)且為直線AB上一點(diǎn),OC=AB,反比例函數(shù)y=的圖象經(jīng)過(guò)點(diǎn)C,則k的值為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖:在長(zhǎng)度為1個(gè)單位的小正方形組成的網(wǎng)格中,點(diǎn)A、B、C在小正方形的頂點(diǎn)上.

(1)在圖中畫(huà)出與△ABC關(guān)于直線l成軸對(duì)稱的△AB′C′;

(2)△ABC的面積為________;

(3)在直線l上找一點(diǎn)P,使PB+PC的長(zhǎng)最短,則這個(gè)最短長(zhǎng)度為________個(gè)單位長(zhǎng)度.(在圖形中標(biāo)出點(diǎn)P)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我們知道,對(duì)任意一個(gè)正整數(shù)n都可以進(jìn)行這樣的分解:n=pq(p,q是正整數(shù),且p≤q),在n的所有這種分解中,如果p,q兩因數(shù)之差的絕對(duì)值最小,我們就稱pq是n的最佳分解,并規(guī)定:F(n)=,例如12可以分解為112,26或34,因?yàn)?2-1>6-2>4-3,所以34是最佳分解,所以F(n)=。

(1)如果一個(gè)正整數(shù)是另外一個(gè)正整數(shù)b的平方,我們稱正整數(shù)a是完全平方數(shù),求證:對(duì)任意一個(gè)完全平方數(shù)m,總有F(m)=1

(2)如果一個(gè)兩位正整數(shù)t,t=10x+y (1≤x≤y≤9,x,y為自然數(shù)),交換其個(gè)位上的數(shù)與十位上的數(shù)得到的新數(shù)減去原來(lái)的兩位正整數(shù)所得的差為18,那么我們就稱這個(gè)數(shù)t為“吉祥數(shù)”,求所有“吉祥數(shù)”中F(t)的最大值。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】用配方法解下列方程時(shí),配方正確的是(  )

A. 方程x2-6x-5=0,可化為(x-3)2=4

B. 方程y2-2y-2 015=0,可化為(y-1)2=2 015

C. 方程a2+8a+9=0,可化為(a+4)2=25

D. 方程2x2-6x-7=0,可化為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四邊形ABCD中,∠BAD100°,∠B=∠D90°,在BC、CD上分別找一個(gè)點(diǎn)M、N,使AMN的周長(zhǎng)最小,則∠AMN+ANM的度數(shù)為( 。

A.130°B.120°C.160°D.100°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知ABC中,ABAC12cm,∠B=∠C,BC8cm,點(diǎn)DAB的中點(diǎn).

1)如果點(diǎn)P在線段BC上以2cm/s的速度由點(diǎn)B向點(diǎn)C運(yùn)動(dòng),同時(shí),點(diǎn)Q在線段CA上由點(diǎn)C向點(diǎn)A運(yùn)動(dòng).

①若點(diǎn)Q的運(yùn)動(dòng)速度與點(diǎn)P的運(yùn)動(dòng)速度相等,經(jīng)過(guò)1秒后,BPDCQP是否全等,請(qǐng)說(shuō)明理由;

②若點(diǎn)Q的運(yùn)動(dòng)速度與點(diǎn)P的運(yùn)動(dòng)速度不相等,當(dāng)點(diǎn)Q的運(yùn)動(dòng)速度為多少時(shí),能夠使BPDCQP全等?

2)若點(diǎn)Q以②中的運(yùn)動(dòng)速度從點(diǎn)C出發(fā),點(diǎn)P以原來(lái)的運(yùn)動(dòng)速度從點(diǎn)B同時(shí)出發(fā),都逆時(shí)針沿ABC三邊運(yùn)動(dòng),則經(jīng)過(guò)   后,點(diǎn)P與點(diǎn)Q第一次在ABC   邊上相遇?(在橫線上直接寫(xiě)出答案,不必書(shū)寫(xiě)解題過(guò)程)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,在ABC中,ABAC,∠BAC90°,∠1=∠2,CEBDBD的延長(zhǎng)線于點(diǎn)ECE1,延長(zhǎng)CE、BA交于點(diǎn)F

1)求證:ADB≌△AFC;

2)求BD的長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小王于上午8時(shí)從甲地出發(fā)去相距50千米的乙地. 右圖中,折線是表示小王離開(kāi)甲地的時(shí)間(時(shí))與路程(千米)之間的函數(shù)關(guān)系的圖像.根據(jù)圖像給出的信息,下列判斷中,錯(cuò)誤的是(

A.小王11時(shí)到達(dá)乙地

B.小王在途中停了半小時(shí)

C.800930相比,小王在10001100前進(jìn)的速度較慢

D.出發(fā)后1小時(shí),小王走的路程少于25千米

查看答案和解析>>

同步練習(xí)冊(cè)答案