【題目】A、B兩地之間有一C地,某日早上9點,一輛電力巡查車作例行巡查,查線路是從A地到C地再原路返回A地,全程勻速行駛,調(diào)頭時間忽略不計.家住C地的陳先生同樣是在當天的早上9點出發(fā),驅(qū)車前往B地取一份文件,然后返回,經(jīng)C地前往公司所在地A地.陳先生余程也是勻速行駛,取文件花費了4分鐘,設(shè)兩車之間的距離為ym,出發(fā)后的行駛時間為xmin,y與x的關(guān)系如圖所示.那么當電力巡查車到達C地時,陳先生距A地還有_____m.
【答案】26000米.
【解析】
由圖象過(0,12000)得到AC兩地的路程,根據(jù)從C地到達B地的時間與距離得到巡查車的速度,進而得到兩車速度的差,則可得陳先生開車速度為1000米/分;再根據(jù)C地到B地的路程得到巡查車到達C地的時間和陳先生返回的時間,進而得到答案.
解:圖象過(0,12000),于是AC兩地的路程為12000米,
由圖象可知,經(jīng)過25分鐘,陳先生從C地到達B地,取文件的4分鐘,兩車距離減小了(29500﹣28300)=1200米,說明巡查車4分鐘行駛1200米,因此巡查車的速度為300米/分,由圖象可知兩車速度的差為:(29500﹣12000)÷25=700米/分,因此陳先生開車速度為:1000米/分;從C地到B地的路程為25×1000=25000米;巡查車到達C地的時間為:12000÷300=40分,陳先生返回的時間為:40﹣29=11分,因此陳先生距A地的距離:(12000+25000)﹣11×1000=26000米.
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)(a>0)的圖象與x軸交于A、B兩點,(A在B左側(cè),且OA<OB),與y軸交于點C.
(1)求C點坐標,并判斷b的正負性;
(2)設(shè)這個二次函數(shù)的圖像的對稱軸與直線AC交于點D,已知DC:CA=1:2,直線BD與y軸交于點E,連接BC,
①若△BCE的面積為8,求二次函數(shù)的解析式;
②若△BCD為銳角三角形,請直接寫出OA的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】解方程:(1) ; (2).
【答案】(1)x1 =1 ,x2=; (2) x1 =-1,x2= .
【解析】試題分析:
根據(jù)兩方程的特點,使用“因式分解法”解兩方程即可.
試題解析:
(1)原方程可化為: ,
方程左邊分解因式得: ,
或,
解得: , .
(2)原方程可化為: ,即,
∴,
∴或,
解得: .
【題型】解答題
【結(jié)束】
20
【題目】已知x1,x2是關(guān)于x的一元二次方程x2-2(m+1)x+m2+5=0的兩實根.
(1)若(x1-1)(x2-1)=28,求m的值;
(2)已知等腰△ABC的一邊長為7,若x1,x2恰好是△ABC另外兩邊的邊長,求這個三角形的周長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線L:y=﹣(x﹣t)(x﹣t+4)(常數(shù)t>0)與x軸從左到右的交點為B,A,過線段OA的中點M作MP⊥x軸,交雙曲線y= (k>0,x>0)于點P,且OAMP=12,
(1)求k值;
(2)當t=1時,求AB的長,并求直線MP與L對稱軸之間的距離;
(3)把L在直線MP左側(cè)部分的圖象(含與直線MP的交點)記為G,用t表示圖象G最高點的坐標;
(4)設(shè)L與雙曲線有個交點的橫坐標為x,且滿足4x6,通過L位置隨t變化的過程,直接寫出t的取值范圍。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】休閑廣場的邊緣是一個坡度為i=1:2.5的緩坡CD,靠近廣場邊緣有一架秋千.秋千靜止時,底端A到地面的距離AB=0.5m,B到緩坡底端C的距離BC=0.7m.若秋千的長OA=2m,則當秋千擺動到與靜止位置成37°時,底端A′到坡面的豎直方向的距離A′E約為( )(參考數(shù)據(jù):sin37°=0.60,cos37°=0.80,tan37°=0.75)
A. 0.4mB. 0.5mC. 0.6mD. 0.7m
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,AB⊥AC,過點D作DE⊥AD交直線AC于點E,點O是對角線AC的中點,點F是線段AD上一點,連接FO并延長交BC于點G.
(1)如圖1,若AC=4,cos∠CAD=,求△ADE的面積;
(2)如圖2,點H為DC是延長線上一點,連接HF,若∠H=30°,DE=BG,求證:DH=CE+FH.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某高中學校為使高一新生入校后及時穿上合身的校服,現(xiàn)提前對某校九年級(3)班學生即將所穿校服型號情況進行了摸底調(diào)查,并根據(jù)調(diào)查結(jié)果繪制了如圖兩個不完整的統(tǒng)計圖(校服型號以身高作為標準,共分為6種型號).
根據(jù)以上信息,解答下列問題:
(1)該班共有多少名學生?其中穿175型校服的學生有多少人?
(2)在條形統(tǒng)計圖中,請把空缺的部分補充完整;
(3)在扇形統(tǒng)計圖中,請計算185型校服所對應(yīng)扇形圓心角的大小;
(4)求該班學生所穿校服型號的眾數(shù)和中位數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】體育組為了了解九年級450名學生排球墊球的情況,隨機抽查了九年級部分學生進行排球墊球測試(單位:個),根據(jù)測試結(jié)果,制成了下面不完整的統(tǒng)計圖表:
(1)表中的數(shù)a= ,b= ;
(2)估算該九年級排球墊球測試結(jié)果小于10的人數(shù);
(3)排球墊球測試結(jié)果小于10的為不達標,若不達標的5人中有3個男生,2個女生,現(xiàn)從這5人中隨機選出2人調(diào)查,試通過畫樹狀圖或列表的方法求選出的2人為一個男生一個女生的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,二次函數(shù)的圖象與x軸交于兩點,其中點A坐標(-1,0),點C(0,5)、D(1,8)在拋物線上,M為拋物線的頂點.
(1)求拋物線的解析式;
(2)求△MCB面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com