【題目】已知:如圖△ABC中,AB為⊙O的直徑,BC切⊙O于點B,AC交⊙O與點F,點E在AC上,且∠EBC= ∠BAC,BE交⊙O于點D.

(1)求證:AB=AE;
(2)若AB=10,cos∠EBC= ,求線段BE和BC的長.

【答案】
(1)

證明:連接AD,

∵AB為直徑,

∴∠ADB=90°=∠ADE,

∴∠DAB+∠ABD=90°,

∵BC切⊙O于B,

∴∠ABD+∠EBC=90°,

∴∠EBC=∠BAD,

∵∠EBC= ∠BAC,

∴∠EAD=∠BAD,

在△ABD和△AED中

∴△ABD≌△AED(ASA),

∴AB=AE.


(2)

解: ∵∠EBC=∠BAD,AB=10,cos∠EBC=

∴在Rt△BAD中,cos∠BAD= =

∴AD=4 ,

由勾股定理得:BD=2

∵△ABD≌△AED,

∴BD=DE,

∴BE=2BD=4 ,

過E作EH⊥BC于H,

則EH∥AB,

∵cos∠EBC= ,BE=4 ,

∴BH=BEcos∠EBC=8,

由勾股定理得:EH= =4,

∵EH∥AB,

∴△CHE∽△CBA,

,

∴CH=5

∴BC=8+5 =13


【解析】(1)連接AD,求出∠EBC=∠BAD,推出∠BAD=∠EAD,證出△ABD≌△AED即可.(2)根據(jù)∠EBC=∠BAD,AB=10,cos∠EBC= 求出AD,根據(jù)勾股定理求出BD,即可求出答案,求出EH,BH,根據(jù)相似求出CH,即可求出答案.
【考點精析】解答此題的關(guān)鍵在于理解切線的性質(zhì)定理的相關(guān)知識,掌握切線的性質(zhì):1、經(jīng)過切點垂直于這條半徑的直線是圓的切線2、經(jīng)過切點垂直于切線的直線必經(jīng)過圓心3、圓的切線垂直于經(jīng)過切點的半徑.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校為了了解初三年級1000名學(xué)生的身體健康情況,從該年級隨機抽取了若干名學(xué)生,將他們按體重(均為整數(shù),單位:kg)分成五組(A39.546.5B46.553.5;C53.560.5D60.567.5;E67.574.5),并依據(jù)統(tǒng)計數(shù)據(jù)繪制了如下兩幅尚不完整的統(tǒng)計圖.

解答下列問題:

1)這次抽樣調(diào)查的樣本容量是 ,并補全頻數(shù)分布直方圖;

2C組學(xué)生的頻率為 ,在扇形統(tǒng)計圖中D組的圓心角是 度;

3)請你估計該校初三年級體重超過60kg的學(xué)生大約有多少名?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,AD=2AB,F(xiàn)AD的中點,作,垂足E在線段AB上,連接EF、CF,則下列結(jié)論中一定成立的是(

EF=CF

A. ①②③ B. ①② C. ②③ D. ①②④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知OP平分∠AOB,∠AOB=60°,CP=2,CP∥OA,PD⊥OA于點D,PE⊥OB于點E.如果點M是OP的中點,則DM的長是( 。

A. 2 B. C. D. 2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了慶祝即將到來的五四青年節(jié),某校舉行了書法比賽,賽后隨機抽查部分參賽同學(xué)的成績,并制作成圖表如下:

分?jǐn)?shù)段

頻數(shù)

頻率

60≤x<70

30

0.15

70≤x<80

m

0.45

80≤x<90

60

n

90≤x≤100

20

0.1

請根據(jù)以上圖表提供的信息,解答下列問題:

(1)這次隨機抽查了   名學(xué)生;表中的數(shù)m=   ,n=   ;

(2)請在圖中補全頻數(shù)分布直方圖;

(3)若繪制扇形統(tǒng)計圖,分?jǐn)?shù)段60≤x<70所對應(yīng)扇形的圓心角的度數(shù)是   

(4)全校共有600名學(xué)生參加比賽,估計該校成績80≤x<100范圍內(nèi)的學(xué)生有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校計劃購買籃球、排球共20個,購買2個籃球,3個排球,共需花費190元;購買3個籃球的費用與購買5個排球的費用相同。

(1)籃球和排球的單價各是多少元?

(2)若購買籃球不少于8個,所需費用總額不超過800元.請你求出滿足要求的所有購買方案,并直接寫出其中最省錢的購買方案

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,方格紙中的每個小正方形的邊長都是1.A、B、C三點都在格點上.

(1)請你以格線所在直線為坐標(biāo)軸建立平面直角坐標(biāo)系,使A、B兩點的坐標(biāo)分別為A(﹣2,3),B(﹣3,1),并寫出C點坐標(biāo);
(2)連接AB、BC、CA得△ABC,將△ABC向右平移4個單位,畫出平移后的△A1B1C1;
(3)將△A1B1C1繞點B1按順時針方向旋轉(zhuǎn)90°,畫出旋轉(zhuǎn)后的△A2B1C2 , 并求出在旋轉(zhuǎn)過程中線段A1B1所掃過的圖形的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:在△PAB的邊PA、PB上分別取點C、D,連接CD使CD∥AB.將△PCD繞點P按逆時針方向旋轉(zhuǎn)得到△PC′D′(∠APC′<∠APB),連接AC′、BD′.

(1)如圖1, 若∠APB=90°,PA=PB,求證:AC′=BD′;AC′⊥BD′.

(2)在圖1中,連接AD′、BC′,分別取AB、AD′、C′D′、BC′的中點E、F、G、H,順次連接E、F、G、H得到四邊形EFGH.請判斷四邊形EFGH的形狀,并說明理由.
(3)①如圖2, 若改變(1)中∠APB的大小,使0°<∠APB<90°,其他條件不變,重復(fù)(2)中操作.請你直接判斷四邊形EFGH的形狀.

②如圖3,若改變(1)中PA、PB的大小關(guān)系,使PA<PB,其他條件不變,重復(fù)(2)中操作,請你直接判斷是四邊形EFGH的形狀.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,方格紙每個小方格是邊長為1個單位長度的正方形,在平面直角坐標(biāo)系中,點A(1,0),B(5,0),C(a,b)D(1,4).

(1)描出A、B、C、D四點的位置.如圖,則a=  ;b=  ;

(2)四邊形ABCD的面積是  ;(直接寫出結(jié)果)

(3)把四邊形ABCD向左平移6個單位,再向下平移1個單位得到四邊形A'B'C'D',在圖中畫出四邊形A'B'C'D',并寫出A'B'C'D'的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案