【題目】一次函數(shù)y=kx+b的圖象與x、y軸分別交于點(diǎn)A(2,0),B(0,4).
(1)求該函數(shù)的解析式;
(2)O為坐標(biāo)原點(diǎn),設(shè)OA、AB的中點(diǎn)分別為C、D,P為OB上一動點(diǎn),求PC+PD的最小值,并求取得最小值時(shí)P點(diǎn)的坐標(biāo).
【答案】
(1)
解:將點(diǎn)A、B的坐標(biāo)代入y=kx+b得:
0=2k+b,4=b,
∴k=﹣2,b=4,
∴解析式為:y=﹣2x+4
(2)
解:
設(shè)點(diǎn)C關(guān)于點(diǎn)O的對稱點(diǎn)為C′,連接C′D交OB于P′,連接P′C,則PC=PC′,
∴PC+PD=PC′+PD=C′D,即PC+PD的最小值是C′D.
連接CD,在Rt△DCC′中,C′D= =2 ,即PC′+PD的最小值為2 ,
∵OA、AB的中點(diǎn)分別為C、D,
∴CD是△OBA的中位線,
∴OP∥CD,CD= OB=2,
∵C′O=OC,
∴OP是△C′CD的中位線,
∴OP= CD=1,
∴點(diǎn)P的坐標(biāo)為(0,1).
【解析】(1)將點(diǎn)A、B的坐標(biāo)代入y=kx+b并計(jì)算得k=﹣2,b=4.求出解析式為:y=﹣2x+4;(2)設(shè)點(diǎn)C關(guān)于點(diǎn)O的對稱點(diǎn)為C′,連接C′D交OB于P,則PC=PC′,PC+PD=PC′+PD=C′D,即PC+PD的最小值是C′D.連接CD,在Rt△DCC′中,由勾股定理求得C′D的值,由OP是△C′CD的中位線而求得點(diǎn)P的坐標(biāo).
【考點(diǎn)精析】本題主要考查了一次函數(shù)的性質(zhì)的相關(guān)知識點(diǎn),需要掌握一般地,一次函數(shù)y=kx+b有下列性質(zhì):(1)當(dāng)k>0時(shí),y隨x的增大而增大(2)當(dāng)k<0時(shí),y隨x的增大而減小才能正確解答此題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一艘海輪位于燈塔P的南偏東45°方向,距離燈塔60n mile的A處,它沿正北方向航行一段時(shí)間后,到達(dá)位于燈塔P的北偏東30°方向上的B處,這時(shí),B處與燈塔P的距離為( )
A.60 n mile
B.60 n mile
C.30 n mile
D.30 n mile
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知在平面直角坐標(biāo)系中,拋物線y=﹣ +bx+c與x軸相交于點(diǎn)A,B,與y軸相交于點(diǎn)C,直線y=x+4經(jīng)過A,C兩點(diǎn),
(1)求拋物線的表達(dá)式;
(2)如果點(diǎn)P,Q在拋物線上(P點(diǎn)在對稱軸左邊),且PQ∥AO,PQ=2AO,求P,Q的坐標(biāo);
(3)動點(diǎn)M在直線y=x+4上,且△ABC與△COM相似,求點(diǎn)M的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點(diǎn)A1、A2、A3、…、An在x軸上,且OA1=A1A2=A2A3═An﹣1An=1,分別過點(diǎn)A1、A2、A3、…、An作x軸的垂線,交反比例函數(shù)y= (x>0)的圖象于點(diǎn)B1、B2、B3、…、Bn , 過點(diǎn)B2作B2P1⊥A1B1于點(diǎn)P1 , 過點(diǎn)B3作B3P2⊥A2B2于點(diǎn)P2 , …,若記△B1P1B2的面積為S1 , △B2P2B3的面積為S2 , …,△BnPnBn+1的面積為Sn , 則S1+S2+…+S2017= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=x2﹣2x﹣3與x軸交A、B兩點(diǎn)(A點(diǎn)在B點(diǎn)左側(cè)),直線l與拋物線交于A、C兩點(diǎn),其中C點(diǎn)的橫坐標(biāo)為2.
(1)求A、B兩點(diǎn)的坐標(biāo)及直線AC的函數(shù)表達(dá)式;
(2)P是線段AC上的一個(gè)動點(diǎn),過P點(diǎn)作y軸的平行線交拋物線于E點(diǎn),求線段PE長度的最大值;
(3)點(diǎn)G拋物線上的動點(diǎn),在x軸上是否存在點(diǎn)F,使A、C、F、G這樣的四個(gè)點(diǎn)為頂點(diǎn)的四邊形是平行四邊形?如果存在,求出所有滿足條件的F點(diǎn)坐標(biāo);如果不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】國務(wù)院辦公廳2015年3月16日發(fā)布了《中國足球改革的總體方案》,這是中國足球歷史上的重大改革.為了進(jìn)一步普及足球知識,傳播足球文化,我市舉行了“足球進(jìn)校園”知識競賽活動,為了解足球知識的普及情況,隨機(jī)抽取了部分獲獎情況進(jìn)行整理,得到下列不完整的統(tǒng)計(jì)圖表:
獲獎等次 | 頻數(shù) | 頻率 |
一等獎 | 10 | 0.05 |
二等獎 | 20 | 0.10 |
三等獎 | 30 | b |
優(yōu)勝獎 | a | 0.30 |
鼓勵獎 | 80 | 0.40 |
請根據(jù)所給信息,解答下列問題:
(1)a= , b= ,
(2)補(bǔ)全頻數(shù)分布直方圖;
(3)若用扇形統(tǒng)計(jì)圖來描述獲獎分布情況,問獲得優(yōu)勝獎對應(yīng)的扇形圓心角的度數(shù)是多少?
(4)在這次競賽中,甲、乙、丙、丁四位同學(xué)都獲得一等獎,若從這四位同學(xué)中隨機(jī)選取兩位同學(xué)代表我市參加上一級競賽,請用樹狀圖或列表的方法,計(jì)算恰好選中甲、乙二人的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=a(x+3)(x﹣1)(a≠0),與x軸從左至右依次相交于A、B兩點(diǎn),與y軸相交于點(diǎn)C,經(jīng)過點(diǎn)A的直線y=﹣ x+b與拋物線的另一個(gè)交點(diǎn)為D.
(1)若點(diǎn)D的橫坐標(biāo)為2,求拋物線的函數(shù)解析式;
(2)若在第三象限內(nèi)的拋物線上有點(diǎn)P,使得以A、B、P為頂點(diǎn)的三角形與△ABC相似,求點(diǎn)P的坐標(biāo);
(3)在(1)的條件下,設(shè)點(diǎn)E是線段AD上的一點(diǎn)(不含端點(diǎn)),連接BE.一動點(diǎn)Q從點(diǎn)B出發(fā),沿線段BE以每秒1個(gè)單位的速度運(yùn)動到點(diǎn)E,再沿線段ED以每秒 個(gè)單位的速度運(yùn)動到點(diǎn)D后停止,問當(dāng)點(diǎn)E的坐標(biāo)是多少時(shí),點(diǎn)Q在整個(gè)運(yùn)動過程中所用時(shí)間最少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC中,∠ABC=45°,F(xiàn)是高AD和BE的交點(diǎn),CD=4,則線段DF的長度為( )
A.
B.4
C.
D.4
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com