求證:-3x2-x+1的值不大于數(shù)學(xué)公式

證明:原式=-3(x2+x+)++1=-3(x+2+
∵(x+2≥0,即-3(x+2≤0,
∴-3(x+2+,
則-3x2-x+1的值不大于
分析:原式前兩項提取-3變形,配方后利用完全平方式大于等于0即可得證.
點評:此題考查了配方法的應(yīng)用,以及非負(fù)數(shù)的性質(zhì),熟練掌握完全平方公式是解本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

選做題:從甲、乙兩題中選做一題,如果兩題都做,只以甲題計分.
題甲:已知關(guān)于x的方程x2+2(a-1)x+a2-7a-4=0的兩根為x1、x2,且滿足x1x2-3x1-3x2-2=0.求(1+
4
a2-4
)•
a+2
a
的值.
題乙:如圖,在梯形ABCD中,AD∥BC,對角線AC、BD相交于點O,AD=2,BC=BD=3,AC精英家教網(wǎng)=4.
(1)求證:AC⊥BD;
(2)求△AOB的面積.
我選做的是
 
題.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=3x2+2(1-a)x-a(a+2)
(1)求證:函數(shù)的圖象與x軸一定有交點;
(2)若方程3x2+2(1-a)x-a(a+2)=0的兩個根均大于-1且小于1,求a的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•衢州二模)已知:拋物線y1=x2以點C為頂點且過點B,拋物線y2=a2x2+b2x+c2以點B為頂點且過點C,分別過點B、C作x軸的平行線,交拋物線y1=x2y2=a2x2+b2x+c2于點A、D,且AB=AC.
(1)如圖1,①求證:△ABC為正三角形;②求點A的坐標(biāo);
(2)①如圖2,若將拋物線“y1=x2”改為“y1=x2+1”,其他條件不變,求CD的長;
②如圖3,若將拋物線“y1=x2”改為“y1=3x2+b1x+c1”,其他條件不變,求a2的值;
(3)若將拋物線“y1=x2”改為拋物線“y1=a1x2+b1x+c1”,其他條件不變,直接寫出b1關(guān)于b2的關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

求證:-3x2-x+1的值不大于
1312

查看答案和解析>>

同步練習(xí)冊答案