【題目】數(shù)和形是數(shù)學(xué)的兩個(gè)主要研究對(duì)象,我們經(jīng)常運(yùn)用數(shù)形結(jié)合、數(shù)形轉(zhuǎn)化的方法解決一些數(shù)學(xué)問(wèn)題。下面我們來(lái)探究“由數(shù)思形,以形助數(shù)”的方法在解決代數(shù)問(wèn)題中的應(yīng)用.
探究一:求不等式的解集
(1)探究的幾何意義
如圖①,在以O為原點(diǎn)的數(shù)軸上,設(shè)點(diǎn)A'對(duì)應(yīng)點(diǎn)的數(shù)為,由絕對(duì)值的定義可知,點(diǎn)A'與O的距離為,
可記為:A'O=。將線段A'O向右平移一個(gè)單位,得到線段AB,,此時(shí)點(diǎn)A對(duì)應(yīng)的數(shù)為,點(diǎn)B的對(duì)應(yīng)數(shù)是1,
因?yàn)?/span>AB= A'O,所以AB=。
因此,的幾何意義可以理解為數(shù)軸上所對(duì)應(yīng)的點(diǎn)A與1所對(duì)應(yīng)的點(diǎn)B之間的距離AB。
(2)求方程=2的解
因?yàn)閿?shù)軸上3與所對(duì)應(yīng)的點(diǎn)與1所對(duì)應(yīng)的點(diǎn)之間的距離都為2,所以方程的解為
(3)求不等式的解集
因?yàn)?/span>表示數(shù)軸上所對(duì)應(yīng)的點(diǎn)與1所對(duì)應(yīng)的點(diǎn)之間的距離,所以求不等式解集就轉(zhuǎn)化為求這個(gè)距離小于2的點(diǎn)所對(duì)應(yīng)的數(shù)的范圍。
請(qǐng)?jiān)趫D②的數(shù)軸上表示的解集,并寫出這個(gè)解集
探究二:探究的幾何意義
(1)探究的幾何意義
如圖③,在直角坐標(biāo)系中,設(shè)點(diǎn)M的坐標(biāo)為,過(guò)M作MP⊥x軸于P,作MQ⊥y軸于Q,則點(diǎn)P點(diǎn)坐標(biāo)(),Q點(diǎn)坐標(biāo)(),|OP|=,|OQ|=,
在Rt△OPM中,PM=OQ=y,則
因此的幾何意義可以理解為點(diǎn)M與原點(diǎn)O(0,0)之間的距離OM
(2)探究的幾何意義
如圖④,在直角坐標(biāo)系中,設(shè)點(diǎn) A'的坐標(biāo)為,由探究(二)(1)可知,
A'O=,將線段 A'O先向右平移1個(gè)單位,再向上平移5個(gè)單位,得到線段AB,此時(shí)A的坐標(biāo)為(),點(diǎn)B的坐標(biāo)為(1,5)。
因?yàn)?/span>AB= A'O,所以 AB=,因此的幾何意義可以理解為點(diǎn)A()與點(diǎn)B(1,5)之間的距離。
(3)探究的幾何意義
請(qǐng)仿照探究二(2)的方法,在圖⑤中畫出圖形,并寫出探究過(guò)程。
(4)的幾何意義可以理解為:_________________________.
拓展應(yīng)用:
(1)+的幾何意義可以理解為:點(diǎn)A與點(diǎn)E的距離與點(diǎn)AA與點(diǎn)F____________(填寫坐標(biāo))的距離之和。
(2)+的最小值為____________(直接寫出結(jié)果)
【答案】探究一(3) 解集為:
探究二(3)()拓展應(yīng)用(1)() (2)5
【解析】
試題分析:探究一(3):的解集就是數(shù)軸上所對(duì)應(yīng)的點(diǎn)與1所對(duì)應(yīng)的點(diǎn)之間的距離小于2的點(diǎn)所對(duì)應(yīng)的數(shù),利用數(shù)軸可知
探究二(3):根據(jù)題目信息,的幾何意義可以理解為點(diǎn)A()與點(diǎn)B()之間的距離。
拓展應(yīng)用:根據(jù)題目信息知是與點(diǎn)F()的距離之和。
+表示點(diǎn)A與點(diǎn)E的距離與點(diǎn)A與點(diǎn)F()的距離之和。∴最小值為E與點(diǎn)F()的距離5.
試題解析:探究一
(3)
解集為:
探究二(3)
如圖⑤,在直角坐標(biāo)系中,設(shè)點(diǎn) A'的坐標(biāo)為,
由探究(二)(1)可知, A'O=,
將線段 A'O先向左平移3個(gè)單位,再向下平移4個(gè)單位,
得到線段AB,此時(shí)A的坐標(biāo)為(),點(diǎn)B的坐標(biāo)為()。
因?yàn)?/span>AB= A'O,所以 AB=,
因此的幾何意義可以理解為點(diǎn)A()與點(diǎn)B()之間的距離。
拓展應(yīng)用
(1)() (2)5
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為大力弘揚(yáng)“奉獻(xiàn)、友愛(ài)、互助、進(jìn)步”的志愿服務(wù)精神,傳播“奉獻(xiàn)他人、提升自我”的志愿服務(wù)理念,東營(yíng)市某中學(xué)利用周末時(shí)間開(kāi)展了“助老助殘、社區(qū)服務(wù)、生態(tài)環(huán)保、網(wǎng)絡(luò)文明”四個(gè)志愿服務(wù)活動(dòng)(每人只參加一個(gè)活動(dòng)),九年級(jí)某班全班同學(xué)都參加了志愿服務(wù),班長(zhǎng)為了解志愿服務(wù)的情況,收集整理數(shù)據(jù)后,繪制以下不完整的統(tǒng)計(jì)圖,請(qǐng)你根據(jù)統(tǒng)計(jì)圖中所提供的信息解答下列問(wèn)題:
(1)求該班的人數(shù);
(2)請(qǐng)把折線統(tǒng)計(jì)圖補(bǔ)充完整;
(3)求扇形統(tǒng)計(jì)圖中,網(wǎng)絡(luò)文明部分對(duì)應(yīng)的圓心角的度數(shù);
(4)小明和小麗參加了志愿服務(wù)活動(dòng),請(qǐng)用樹(shù)狀圖或列表法求出他們參加同一服務(wù)活動(dòng)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了解某校學(xué)生對(duì)《最強(qiáng)大腦》、《朗讀者》、《中國(guó)詩(shī)詞大會(huì)》、《出彩中國(guó)人》四個(gè)電視節(jié)目的喜愛(ài)情況,隨機(jī)抽取了名學(xué)生進(jìn)行調(diào)查統(tǒng)計(jì)(要求每名學(xué)生選出并且只能選出一個(gè)自己最喜愛(ài)的節(jié)目),并將調(diào)查結(jié)果繪制成如下統(tǒng)計(jì)圖表:
根據(jù)以上提供的信息,解答下列問(wèn)題:
(1)______,______,______;
(2)補(bǔ)全上面的條形統(tǒng)計(jì)圖;
(3)若該校共有學(xué)生1000名.根據(jù)抽樣調(diào)查結(jié)果,估計(jì)該校最喜愛(ài)《中國(guó)詩(shī)詞大會(huì)》節(jié)目的學(xué)生有多少名.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,AB=AC.
(1)如圖1,如果∠BAD=30°,AD是BC上的高,AD=AE,則∠EDC=
(2)如圖2,如果∠BAD=40°,AD是BC上的高,AD=AE,則∠EDC=
(3)思考:通過(guò)以上兩題,你發(fā)現(xiàn)∠BAD與∠EDC之間有什么關(guān)系?請(qǐng)用式子表示:
(4)如圖3,如果AD不是BC上的高,AD=AE,是否仍有上述關(guān)系?如有,請(qǐng)你寫出來(lái),并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列一組是按規(guī)律排列的數(shù):1,2,4,8,16,…,第2016個(gè)數(shù)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,邊AB、AC的垂直平分線分別交邊BC于點(diǎn)D、E,若∠DAE=40°,則∠BAC的度數(shù)為________________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com