【題目】如圖,在△ABC中,AD是BC邊上的中線,E是AD的中點(diǎn),過點(diǎn)A作BC的平行線交BE的延長線于點(diǎn)F,連接CF.
(1)求證:AF=DC;
(2)若AB⊥AC,試判斷四邊形ADCF的形狀,并證明你的結(jié)論.
【答案】
(1)證明:∵AF∥BC,
∴∠AFE=∠DBE,
∵E是AD的中點(diǎn),AD是BC邊上的中線,
∴AE=DE,BD=CD,
在△AFE和△DBE中
∴△AFE≌△DBE(AAS),
∴AF=BD,
∴AF=DC.
(2)解:四邊形ADCF是菱形,
證明:AF∥BC,AF=DC,
∴四邊形ADCF是平行四邊形,
∵AC⊥AB,AD是斜邊BC的中線,
∴AD= BC=DC,
∴平行四邊形ADCF是菱形.
【解析】(1)由平行線的性質(zhì)可知:AF∥BC,得到∠AFE=∠DBE,又E是AD的中點(diǎn),AD是BC邊上的中線,得到AE=DE,BD=CD,所以△AFE≌△DBE(AAS),AF=BD,即AF=DC;(2)AF∥BC,AF=DC,根據(jù)平行四邊形的定義得到四邊形ADCF是平行四邊形,又AC⊥AB,AD是斜邊BC的中線,得到AD= BC=DC,根據(jù)菱形的定義得到平行四邊形ADCF是菱形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在數(shù)軸上,點(diǎn)M、N分別表示數(shù)m,n. 則點(diǎn)M,N 之間的距離為|m-n|.已知點(diǎn)A,B,C,D在數(shù)軸上分別表示的數(shù)為a,b,c,d.且|a-c|=|b-c|=|d-a|=1 (a≠b),則線段BD的長度為( )
A.3.5B.0.5C.3.5或0.5D.4.5或0.5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有一等腰直角三角形紙片,以它的對稱軸為折痕,將三角形對折,得到的三角形還是等腰直角三角形(如圖).依照上述方法將原等腰直角三角形折疊四次,所得小等腰直角三角形的周長是原等腰直角三角形周長的倍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】乘法公式的探究及應(yīng)用.
(1)如圖1,可以求出陰影部分的面積是 (寫成兩數(shù)平方差的形式);
(2)如圖2,若將陰影部分裁剪下來,重新拼成一個(gè)矩形,它的寬是 ,長是 ,面積是 (寫成多項(xiàng)式乘法的形式);
(3)比較圖1、圖2兩圖的陰影部分面積,可以得到乘法公式 (用式子表達(dá));
(4)運(yùn)用你所得到的公式,計(jì)算下列各題:
①(2m+n-p)(2m-n+p);②10.3×9.7.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,直線,點(diǎn)為平面上一點(diǎn),連接與.
(1)如圖1,點(diǎn)在直線、之間,當(dāng),時(shí),求.
(2)如圖2,點(diǎn)在直線、之間左側(cè),與的角平分線相交于點(diǎn),寫出與之間的數(shù)量關(guān)系,并說明理由.
(3)如圖3,點(diǎn)落在下方,與的角平分線相交于點(diǎn),與有何數(shù)量關(guān)系?并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,AD是∠BAC的平分線,E、F分別為AB、AC上的點(diǎn),且∠EDF+∠EAF=180°,求證DE=DF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,對角線AC,BD相交于點(diǎn)O,P是BC邊中點(diǎn),AP交BD于點(diǎn)Q.則 的值為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,點(diǎn)E是線段AD上的任意一點(diǎn)(E與A,D不重合),G,F,H分別為BE,BC,CE的中點(diǎn).
(1)試說明四邊形EGFH是平行四邊形;
(2)在(1)的條件下,若EF⊥BC,且EF=BC,試說明平行四邊形EGFH是正方形.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com