為了讓學(xué)生了解文明禮儀知識(shí),增強(qiáng)文明意識(shí),養(yǎng)成文明習(xí)慣,某中學(xué)開展“文明禮儀知識(shí)”競賽,八(1)班、八(2)班各選出5名選手參加復(fù)賽,這5名選手的復(fù)賽成績(得分取正整數(shù),滿分為100分)如圖所示.
(1)根據(jù)上圖填寫下表:
  平均數(shù)(分) 中位數(shù)(分) 眾數(shù)(分)
八(1)班 85   83
八(2)班   80  

(2)結(jié)合兩班復(fù)賽成績的中位數(shù)和眾數(shù),分析哪個(gè)班的復(fù)賽成績較好;
(3)你認(rèn)為哪個(gè)班5名選手成績更平穩(wěn)一些,并說明理由.(參考公式:s2=
1
n
[(x1-
.
x
2+(x2-
.
x
2+…+(xn-
.
x
2])
分析:(1)由條形圖求出八(1)的中位數(shù)、八(2)班的眾數(shù),
(2)由(1)再分析哪個(gè)班復(fù)賽成績較好,
(3)根據(jù)方差判斷哪個(gè)班5名選手成績更平穩(wěn)一些.
解答:解:(1)把八(1)班5名選手參加復(fù)賽的成績從小到大排列,中間一個(gè)數(shù)為85分,
∴八(1)班中位數(shù)為85分,看八(2)班5名選手參加復(fù)賽的成績,出現(xiàn)次數(shù)最多的是100分,
∴八(2)班5名選手參加復(fù)賽的成績的眾數(shù)是100分;

(2)∵八(1)班中位數(shù)為85分,八(2)班中位數(shù)為80分,能達(dá)到80分的人數(shù)八(1)好于八(2),
∴結(jié)合兩班復(fù)賽成績的中位數(shù),八(1)班比八(2)班復(fù)賽成績較好;
∵八(1)班眾數(shù)為85分,八(2)班眾數(shù)為100分,100分的人數(shù)出現(xiàn)最多的,八(2)好于八(1),
∴結(jié)合兩班復(fù)賽成績的眾數(shù),八(2)班比八(1)班復(fù)賽成績較好.

(3)八(1)班比八(2)班5名選手成績更平穩(wěn)一些.
理由如下:從方差看:
S21班=
1
5
[(85-85)2+(75-85)2+(80-85)2+(85-85)2+(100-85)2]=69,
S22班=
1
5
[(70-85)2+(100-85)2+(100-85)2+(75-85)2+(80-85)2]=160,
∵S21班<S22班,
∴八(1)班比八(2)班5名選手成績更平穩(wěn)一些.
或從極差看:八(1)班的極差=100-75=25,八(2)班的極差=100-70=30,
∴八(1)班比八(2)班5名選手成績更平穩(wěn)一些.
點(diǎn)評(píng):此題考查了平均數(shù)、中位數(shù)、眾數(shù)和方差的意義即運(yùn)用.方差是用來衡量一組數(shù)據(jù)波動(dòng)大小的量,方差越大,表明這組數(shù)據(jù)偏離平均數(shù)越大,即波動(dòng)越大,數(shù)據(jù)越不穩(wěn)定;反之,方差越小,表明這組數(shù)據(jù)分布比較集中,各數(shù)據(jù)偏離平均數(shù)越小,即波動(dòng)越小,數(shù)據(jù)越穩(wěn)定.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

16、為了讓學(xué)生了解文明禮儀知識(shí),增強(qiáng)文明意識(shí),養(yǎng)成文明習(xí)慣.某中學(xué)在“文明日照,從我做起”知識(shí)普及活動(dòng)中,舉行了一次“文明禮儀知識(shí)”競賽,共有3 000名學(xué)生參加了這次競賽.為了了解本次競賽的成績情況,從中抽取部分學(xué)生的成績(得分取正整數(shù),滿分為100分)進(jìn)行了統(tǒng)計(jì).
請(qǐng)你根據(jù)上面尚未完成并有局部污損的頻率分布表和頻率分布直方圖,解答下列問題:
(1)求頻率分布表中的m、n;
(2)補(bǔ)全頻率分布直方圖;
(3)你能根據(jù)所學(xué)知識(shí)確定“眾數(shù)”、“中位數(shù)”在哪一組嗎.(不要求說明理由)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

為了讓學(xué)生了解文明禮儀知識(shí),增強(qiáng)文明意識(shí),養(yǎng)成文明習(xí)慣.某市在“文明校園,從我做起”知識(shí)普及活動(dòng)中,舉行了一次“文明禮儀知識(shí)”競賽,共有4000名學(xué)生參加了這次競賽.為了了解本次競賽的成績情況,從中抽取75名學(xué)生的成績(得分取正整數(shù),滿分為100分)進(jìn)行了統(tǒng)計(jì).
請(qǐng)你根據(jù)上面尚未完成并有局部污損的頻數(shù)分布表和頻數(shù)分布直方圖,解答下列問題:
組別 分組 頻數(shù) 頻率
1  50.5~60.5  6  0.08
2  60.5~70.5  9  0.12
3  70.5~80.5  15  m
4  80.5~90.5  24  0.32
5  90.5~100.5  n  0.28
合計(jì)

(1)求頻數(shù)分布表中的m、n;
(2)補(bǔ)全頻數(shù)分布直方圖,并畫出頻數(shù)分布折線圖(畫在原圖上);
(3)所有參加這次競賽的學(xué)生中,得分在80分以上(不包括80分)的學(xué)生約有多少名?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012-2013學(xué)年山西農(nóng)業(yè)大學(xué)附屬中學(xué)八年級(jí)下學(xué)期期末考試數(shù)學(xué)試卷(帶解析) 題型:解答題

為了讓學(xué)生了解文明禮儀知識(shí),增強(qiáng)文明意識(shí),養(yǎng)成文明習(xí)慣。某中學(xué)在“文明禮儀,從我做起”知識(shí)普及活動(dòng)中,舉行了一次“文明禮儀知識(shí)”競賽,共有3000名學(xué)生參加了這次競賽。為了了解本次競賽的成績情況,從中抽取部分學(xué)生的成績(得分取正整數(shù),滿分為100分)進(jìn)行了統(tǒng)計(jì)。
頻率分布表

組別
分組
頻數(shù)
頻率
1
50.5~60.5
6
0.08
2
60.5~70.5
9
0.12
3
70.5~80.5
15
m
4
80.5~90.5
24
0.32
5
90.5~100.5
n
0.28
合計(jì)
 
 
 
頻數(shù)分布直方圖

請(qǐng)你根據(jù)上面尚未完成并有局部污損的頻率分布表和頻率分布直方圖,解答下列問題:
(1)求頻率分布表中的m、n;
(2)補(bǔ)全頻數(shù)分布直方圖;
(3)你能根據(jù)所學(xué)知識(shí)確定“眾數(shù)”落在哪一組嗎?“中位數(shù)”在哪一組嗎?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2014屆山西農(nóng)業(yè)大學(xué)附屬中學(xué)八年級(jí)下學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:解答題

為了讓學(xué)生了解文明禮儀知識(shí),增強(qiáng)文明意識(shí),養(yǎng)成文明習(xí)慣。某中學(xué)在“文明禮儀,從我做起”知識(shí)普及活動(dòng)中,舉行了一次“文明禮儀知識(shí)”競賽,共有3000名學(xué)生參加了這次競賽。為了了解本次競賽的成績情況,從中抽取部分學(xué)生的成績(得分取正整數(shù),滿分為100分)進(jìn)行了統(tǒng)計(jì)。

頻率分布表

組別

分組

頻數(shù)

頻率

1

50.5~60.5

6

0.08

2

60.5~70.5

9

0.12

3

70.5~80.5

15

m

4

80.5~90.5

24

0.32

5

90.5~100.5

n

0.28

合計(jì)

 

 

 

頻數(shù)分布直方圖

請(qǐng)你根據(jù)上面尚未完成并有局部污損的頻率分布表和頻率分布直方圖,解答下列問題:

(1)求頻率分布表中的m、n;

(2)補(bǔ)全頻數(shù)分布直方圖;

(3)你能根據(jù)所學(xué)知識(shí)確定“眾數(shù)”落在哪一組嗎?“中位數(shù)”在哪一組嗎?

 

查看答案和解析>>

同步練習(xí)冊(cè)答案