【題目】如圖,矩形ABCD中,延長(zhǎng)AB至E,延長(zhǎng)CD至F,BE=DF,連接EF,與BC、AD分別相交于P、Q兩點(diǎn).
(1)求證:CP=AQ;
(2)若BP=1,PQ=,∠AEF=45°,求矩形ABCD的面積.
【答案】(1)證明見解析;(2)8.
【解析】試題分析:
(1)由矩形的性質(zhì)得出∠A=∠ABC=∠C=∠ADC=90°,AB=CD,AD=BC,AB∥CD,AD∥BC,證出∠E=∠F,AE=CF,由ASA證明△CFP≌△AEQ,即可得出結(jié)論;(2)證明△BEP、△AEQ是等腰直角三角形,得出BE=BP=1,AQ=AE,求出PE= ,得出EQ=PE+PQ= ,由等腰直角三角形的性質(zhì)和勾股定理得出AQ=AE=3,求出AB=AE-BE=2,DQ=BP=1,得出AD=AQ+DQ=4,即可求出矩形ABCD的面積;
試題解析:
(1)證明:
∵四邊形ABCD是矩形
∴∠A=∠ABC=∠C=∠ADC=90°
∴AB=CD,AD=BC,AB∥CD,AD∥BC
∴∠E=∠F
∵BE=DF
∴AE=CF
在△CFP和△AEQ中
∴△CFP≌△AEQ(ASA)
∴CP=AQ
(2)解:∵AD∥BC
∴∠PBE=∠A=90°
∵∠AEF=45°
∴△BEP、△AEQ是等腰直角三角形
∴BE=BP=1,AQ=AE
∴PE= BP=
∴EQ=PE+PQ=+2 =3
∴AQ=AE=3
∴AB=AE﹣BE=2
∵CP=AQ,AD=BC
∴DQ=BP=1
∴AD=AQ+DQ=3+1=4
∴矩形ABCD的面積=AB×AD=2×4=8.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若一個(gè)長(zhǎng)方體的長(zhǎng)為5.4×102 mm,寬為100 mm,高為2×102 mm,則此長(zhǎng)方體的體積為( )
A. 1.08×105 mm3 B. 1.08×106 mm3 C. 1.08×107 mm3 D. 1.08×108 mm3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2016年5月9日﹣11日,貴州省第十一屆旅游產(chǎn)業(yè)發(fā)展大會(huì)在準(zhǔn)一市茅臺(tái)鎮(zhèn)舉行,大會(huì)推出五條遵義精品旅游線路:A紅色經(jīng)典,B醉美丹霞,C生態(tài)茶海,D民族風(fēng)情,E避暑休閑.某校攝影小社團(tuán)在“祖國(guó)好、家鄉(xiāng)美”主題宣傳周里,隨機(jī)抽取部分學(xué)生舉行“最愛旅游路線”投票活動(dòng),參與者每人選出一條心中最愛的旅游路線,社團(tuán)對(duì)投票進(jìn)行了統(tǒng)計(jì),并繪制出如下不完整的條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖,請(qǐng)解決下列問題.
(1)本次參與投票的總?cè)藬?shù)是 人.
(2)請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖.
(3)扇形統(tǒng)計(jì)圖中,線路D部分的圓心角是 度.
(4)全校2400名學(xué)生中,請(qǐng)你估計(jì),選擇“生態(tài)茶海”路線的人數(shù)約為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列計(jì)算正確的是( )
A. 2a+a=3a2 B. a6÷a2=a3 C. (a3)2=a6 D. a32a2=2a6
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列各式不能使用平方差公式的是( )
A. (2a+b)(2a﹣b) B. (﹣2a+b)(b﹣2a)
C. (﹣2a+b)(﹣2a﹣b) D. (2a﹣b)﹣(2a﹣b)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com