6、已知:如圖,AD平分∠BAC,AB=AC.
求證:△DBC是等腰三角形.
分析:可由SAS可得△ABD≌△ACD,可得∠ABD=∠ACD,AB=AC,再由角之間的轉化即可得出結論.
解答:證明:∵AD平分∠BAC,∴∠BAD=∠CAD,AB=AC,又AD為公共邊,
∴△ABD≌△ACD,∴∠ABD=∠ACD,AB=AC,∴∠ABC=∠ACB,
∴∠DBC=∠DCB,∴DB=CD,
∴△DBC是等腰三角形.
點評:本題主要考查了全等三角形的判定及性質以及等腰三角形的判定問題,應熟練掌握.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

26、已知:如圖,AD平分∠BAC,AD=AB,CM⊥AD于M.請你通過觀察和測量,猜想線段AB、AC之和與線段AM有怎樣的數(shù)量關系,并證明你的結論.
猜想:
AB+AC=2AM

證明:

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:如圖,AD平分∠BAC,∠BFE=∠DAC.
求證:∠BFE=∠G.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:如圖,AD平分∠BAC,DE∥AC交AB于E,DF∥AB交AC于F. 求證:EF⊥AD.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:如圖,AD平分∠BAC,M是BC的中點,MF∥AD交CA的延長線于F,求證:BE=CF.

查看答案和解析>>

同步練習冊答案