【題目】如圖,已知拋物線過點A(4,0),B(﹣2,0),C(0,﹣4).
(1)求拋物線的解析式;
(2)在圖甲中,點M是拋物線AC段上的一個動點,當(dāng)圖中陰影部分的面積最小值時,求點M的坐標(biāo);
(3)在圖乙中,點C和點C1關(guān)于拋物線的對稱軸對稱,點P在拋物線上,且∠PAB=∠CAC1,求點P的橫坐標(biāo).
【答案】(1)y=x2-x-4(2)點M的坐標(biāo)為(2,-4)(3)-或-
【解析】
(1)設(shè)交點式y=a(x+2)(x-4),然后把C點坐標(biāo)代入求出a即可得到拋物線解析式;
(2) 連接OM,設(shè)點M的坐標(biāo)為.由題意知,當(dāng)四邊形OAMC面積最大時,陰影部分的面積最小.S四邊形OAMC=S△OAM+S△OCM-(m-2)2+12. 當(dāng)m=2時,四邊形OAMC面積最大,此時陰影部分面積最小;
(3) 拋物線的對稱軸為直線x=1,點C與點C1關(guān)于拋物線的對稱軸對稱,所以C1(2,-4).連接CC1,過C1作C1D⊥AC于D,則CC1=2.先求AC=4,CD=C1D=,AD=4-=3;設(shè)點P ,過P作PQ垂直于x軸,垂足為Q. 證△PAQ∽△C1AD,得,即,解得解得n=-,或n=-,或n=4(舍去).
(1)拋物線的解析式為y= (x-4)(x+2)=x2-x-4.
(2)連接OM,設(shè)點M的坐標(biāo)為.
由題意知,當(dāng)四邊形OAMC面積最大時,陰影部分的面積最小.
S四邊形OAMC=S△OAM+S△OCM
=× 4m+× 4
=-m2+4m+8=-(m-2)2+12.
當(dāng)m=2時,四邊形OAMC面積最大,此時陰影部分面積最小,所以點M的坐標(biāo)為(2,-4).
(3)∵拋物線的對稱軸為直線x=1,點C與點C1關(guān)于拋物線的對稱軸對稱,所以C1(2,-4).
連接CC1,過C1作C1D⊥AC于D,則CC1=2.
∵OA=OC,∠AOC=90°,∠CDC1=90°,
∴AC=4,CD=C1D=,AD=4-=3,
設(shè)點P ,過P作PQ垂直于x軸,垂足為Q.
∵∠PAB=∠CAC1,∠AQP=∠ADC1,
∴△PAQ∽△C1AD,
∴,
即 ,化簡得 =(8-2n),
即3n2-6n-24=8-2n,或3n2-6n-24=-(8-2n),
解得n=-,或n=-,或n=4(舍去),
∴點P的橫坐標(biāo)為-或-.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某班將舉行“數(shù)學(xué)知識競賽”活動,班長安排小明購買獎品,下面兩圖是小明買回獎品時與班長的對話情境:
請根據(jù)上面的信息,解決問題:
(1)試計算兩種筆記本各買了多少本?
(2)請你解釋:小明為什么不可能找回68元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小軍的爸爸和小慧的爸爸都是出租車司機,他們在每天的白天、夜間都要到同一加油站各加一次油.白天和夜間的油價不同,有時白天高,有時夜間高,但不管價格如何變化,他們兩人采用固定的加油方式:小軍的爸爸不論是白天還是夜間每次總是加油,小慧的爸爸則不論是白天還是夜間每次總是花元錢加油.假設(shè)某天白天油的價格為每升元,夜間油的價格為每升元.
問:(1)小軍的爸爸和小慧的爸爸在這天加油的平均單價各是多少?
(2)誰的加油方式更合算?請你通過數(shù)學(xué)運算,給以解釋說明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在平面直角坐標(biāo)系xOy中,直線AB分別與x軸、y軸交于點B,A,與反比例函數(shù)的圖象分別交于點C,D,CE⊥x軸于點E,tan∠ABO=,OB=4,OE=2.
(1)求該反比例函數(shù)的解析式;
(2)求三角形CDE的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】列方程解應(yīng)用題:
商店經(jīng)營有A、B兩種品牌的筆,A種筆的單價比B種筆的單價貴2元,若花140買A種筆,120元買B種筆,則A種筆反而比B種筆少一支.
(1)求A、B兩種品牌的筆每支各多少元.
(2)某單位準(zhǔn)備一次性購買兩種筆共200支,預(yù)計費用不超過1800元.并且規(guī)定,A種筆的數(shù)量不能少于B種筆的.問如何購買,單位花錢最少?最少花多少錢?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在某小學(xué)“演講大賽”選拔賽初賽中,甲、乙、丙三位評委對小選手的綜合表現(xiàn),分別給出“待定”(用字母W表示)或“通過”(用字母P表示)的結(jié)論.
(1)請用樹狀圖表示出三位評委給小選手琪琪的所有可能的結(jié)論;
(2)對于小選手琪琪,只有甲、乙兩位評委給出相同結(jié)論的概率是多少?
(3)比賽規(guī)定,三位評委中至少有兩位給出“通過”的結(jié)論,則小選手可入圍進入復(fù)賽,問琪琪進入復(fù)賽的概率是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,E是DC邊上的點,連接BE,將△BCE繞點C順時針方向旋轉(zhuǎn)90°得到△DCF,連接EF.若∠EFD=15°,則∠CDF的度數(shù)為__.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為響應(yīng)香洲區(qū)全面推進書香校園建設(shè)的號召,班長小青隨機調(diào)查了若干同學(xué)一周課外閱讀的時間t(單位:小時),將獲得的數(shù)據(jù)分成四組,繪制了如下統(tǒng)計圖(A:0<t≤7,B:7<t≤14,C:14<t≤21,D:t>21),根據(jù)圖中信息,解答下列問題:
(1)這項工作中被調(diào)查的總?cè)藬?shù)是多少?
(2)補全條形統(tǒng)計圖,并求出表示A組的扇形統(tǒng)計圖的圓心角的度數(shù);
(3)如果小青想從D組的甲、乙、丙、丁四人中先后隨機選擇兩人做讀書心得發(fā)言代表,請用列表或樹狀圖的方法求出恰好選中甲的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com