如圖,點(diǎn)E在正方形ABCD的邊AB上,連接DE,過點(diǎn)C作CF⊥DE于F,過點(diǎn)A作AG∥CF交DE于點(diǎn)G.
(1)求證:△DCF≌△ADG.
(2)若點(diǎn)E是AB的中點(diǎn),設(shè)∠DCF=α,求sinα的值.
考點(diǎn):
正方形的性質(zhì);全等三角形的判定與性質(zhì);解直角三角形.
分析:
(1)根據(jù)正方形的性質(zhì)求出AD=DC,∠ADC=90°,根據(jù)垂直的定義求出∠CFD=∠CFG=90°,再根據(jù)兩直線平行,內(nèi)錯(cuò)角相等求出∠AGD=∠CFG=90°,從而得到∠AGD=∠CFD,再根據(jù)同角的余角相等求出∠ADG=∠DCF,然后利用“角角邊”證明△DCF和△ADG全等即可;
(2)設(shè)正方形ABCD的邊長為2a,表示出AE,再利用勾股定理列式求出DE,然后根據(jù)銳角的正弦等于對邊比斜邊求出∠ADG的正弦,即為α的正弦.
解答:
(1)證明:在正方形ABCD中,AD=DC,∠ADC=90°,
∵CF⊥DE,
∴∠CFD=∠CFG=90°,
∵AG∥CF,
∴∠AGD=∠CFG=90°,
∴∠AGD=∠CFD,
又∵∠ADG+∠CDE=∠ADC=90°,
∠DCF+∠CDE=90°,
∴∠ADG=∠DCF,
∵在△DCF和△ADG中,
,
∴△DCF≌△ADG(AAS);
(2)設(shè)正方形ABCD的邊長為2a,
∵點(diǎn)E是AB的中點(diǎn),
∴AE=×2a=a,
在Rt△ADE中,DE===a,
∴sin∠ADG===,
∵∠ADG=∠DCF=α,
∴sinα=.
點(diǎn)評:
本題考查了正方形的性質(zhì),全等三角形的判定與性質(zhì),銳角三角函數(shù),同角的余角相等的性質(zhì),以及勾股定理的應(yīng)用,熟練掌握各圖形的性質(zhì)并確定出三角形全等的條件是解題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
A、
| ||
B、
| ||
C、3 | ||
D、5 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com