如圖①,在平面直角坐標系中,Rt△AOB≌Rt△CDA,且A(-1,0)、B(0,2),拋物線y=ax2+ax-2經(jīng)過點C.
(1)求拋物線的解析式;
(2)在拋物線(對稱軸的右側(cè))上是否存在兩點P、Q,使四邊形ABPQ是正方形?若存在,求點P、Q的坐標,若不存在,請說明理由;
(3)如圖②,E為BC延長線上一動點,過A、B、E三點作⊙O′,連接AE,在⊙O′上另有一點F,且AF=AE,AF交BC于點G,連接BF.下列結(jié)論:①BE+BF的值不變;②,其中有且只有一個成立,請你判斷哪一個結(jié)論成立,并證明成立的結(jié)論.

【答案】分析:(1)已知了Rt△AOB≌Rt△CDA,因此OB=AD=2,OA=CD=1,據(jù)此可求出C點坐標,然后將C點坐標代入拋物線中即可求出二次函數(shù)的解析式.
(2)可以AB為邊在拋物線的右側(cè)作正方形AQPB,過P作PE⊥y軸,過Q作QG垂直x軸于G,不難得出三角形ABO和三角形BPE和三角形QAG都全等,據(jù)此可求出P,Q的坐標,然后將兩點坐標代入拋物線的解析式中即可判斷出P、Q是否在拋物線上.
(另一種解法,如果存在這樣的正方形AQPB,那么Q點必為直線CA與拋物線的交點,據(jù)此可求出Q點坐標,同理可先求出直線BP的解析式進而求出P點坐標,然后根據(jù)所得的P、Q的坐標判定矩形的四邊是否相等即可.)
(3)本題中應(yīng)該是②成立.本題要通過構(gòu)建相似三角形求解.可連接EF,過F作FM∥GB角AB的延長線于M,那么根據(jù)BG∥MF可得出BG:AG=MF:AF,因此只需證明FM=BF即可.由于∠MBF是圓的內(nèi)接四邊形,因此∠FBM=∠AEF,而根據(jù)BG∥FM,可得出∠M=∠ABE,題中告訴了AE=AF,即弧AE=弧AF,根據(jù)圓周角定理可得∠AEF=∠ABE,由此可得出∠M=∠FBM,即BF=FM,由此可得證.
3)結(jié)論②成立,證明如下:連EF,過F作FM∥BG交AB的延長線于M,則△AMF∽△ABG,

由(1)知△ABC是等腰直角三角形,
∴∠1=∠2=45°
∵AF=AE
∴∠AEF=∠1=45°,
∴∠EAF=90°,
∴EF是⊙O的直徑.
∴∠EBF=90°,
∵FM∥BG,
∴∠MFB=∠EBF=90°,∠M=∠2=45°,
∴BF=MF,
解答:解:(1)由Rt△AOB≌Rt△CDA,得OD=2+1=3,CD=1
∴C點坐標為(-3,1),
∴拋物線經(jīng)過點C,
∴1=a(-3)2+a(-3)-2,
∴a=
∴拋物線的解析式為y=x2+x-2

(2)在拋物線(對稱軸的右側(cè))上存在點P、Q,使四邊形ABPQ是正方形.
以AB為邊在AB的右側(cè)作正方形ABPQ,過P作PE⊥OB于E,QG⊥x軸于G,可證△PBE≌△AQG≌△BAO,
∴PE=AG=BO=2,BE=QG=AO=1,
∴P點坐標為(2,1),Q點坐標為(1,-1).
由(1)拋物線y=x2+x-2
當x=2時,y=1;當x=1時,y=-1.
∴P、Q在拋物線上.
故在拋物線(對稱軸的右側(cè))上存在點P(2,1)、Q(1,-1),使四邊形ABPQ是正方形.

(2)另解:在拋物線(對稱軸右側(cè))上存在點P、Q,使四邊形ABPQ是正方形.
延長CA交拋物線于Q,過B作BP∥CA交拋物線于P,連PQ,設(shè)直線CA、BP的解析式分別為y=k1x+b1;y=k2x+b2,
∵A(-1,0),C(-3,1),
∴CA的解析式為y=-x-,
同理得BP的解析式y(tǒng)=-x+2,
解方程組,
得Q點坐標為(1,-1),
同理得P點坐標為(2,1)
由勾股定理得AQ=BP=AB=,而∠BAQ=90°,四邊形ABPQ是正方形,
故在拋物線(對稱軸右側(cè))上存在點P(2,1)、Q(1,-1),使四邊形ABPQ是正方形.
(3)結(jié)論②成立,
證明如下:連EF,過F作FM∥BG交AB的延長線于M,則△AMF∽△ABG,

由(1)知△ABC是等腰直角三角形,
∴∠1=∠2=45°
∵AF=AE
∴∠AEF=∠1=45°,
∴∠EAF=90°,
∴EF是⊙O的直徑.
∴∠EBF=90°,
∵FM∥BG,
∴∠MFB=∠EBF=90°,∠M=∠2=45°,
∴BF=MF,

點評:本題主要考查了二次函數(shù)解析式的確定、正方形的判定、相似三角形的判定和性質(zhì)等知識點.綜合性強,涉及的知識點多,難度較大.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

23、在數(shù)學(xué)上,為了確定平面上點的位置,我們常用下面的方法:如圖甲,在平面內(nèi)畫兩條互相垂直,并且有公共原點O的數(shù)軸,通常一條畫成水平,叫x軸,另一條畫成鉛垂,叫y軸,這樣,我們就說在平面上建立了一個平面直角坐標系,這是由法國數(shù)學(xué)家和哲學(xué)家笛卡爾創(chuàng)立的,這樣我們就能確定平面上點的位置,例如,要確定點M的位置,只要作MP⊥x軸,MP⊥y軸,設(shè)垂足N,P在各自數(shù)軸上所表示的數(shù)分別為x,y,則x叫做點M的橫坐標,y叫做點M的縱坐標,有序數(shù)對(x,y)叫做M點的坐標,如圖甲,點M的坐標記作(2,3),(1)△ABC在平面直角坐標系中的位置如圖乙,請把△ABC向右平移3個單位,在平面直角坐標系中畫出平移后的△A′B′C′;
(2)請寫出平移后點A′的坐標,記作
(2,2)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在平面直角坐標系中,將一塊腰長為2
2
cm的等腰直角三角板ABC如圖放置,BC邊與x軸重合,∠ACB=90°,直角頂點C的坐標為(-3,0).
(1)點A的坐標為
(-3,2
2
(-3,2
2
,點B的坐為
(-3-2
2
,0)
(-3-2
2
,0)
;
(2)求以原點O為頂點且過點A的拋物線的解析式;
(3)現(xiàn)三角板ABC以1cm/s的速度沿x軸正方向平移,則平移的時間為多少秒時,三角板的邊所在直線與半徑為2cm的⊙O相切?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:同步輕松練習(xí) 八年級 數(shù)學(xué) 上 題型:059

學(xué)校閱覽室有能坐4人的方桌,如果多于4人,就把方桌拼成一行,2張方桌拼成一行能坐6人(如圖)

(1)按照這種規(guī)定填寫下表:

(2)根據(jù)表中的數(shù)據(jù),將s作為縱坐標,n作為橫坐標,在如圖所示的平面直角坐標系中找出相應(yīng)各點.

(3)請你猜一猜上述各點會在某一個函數(shù)圖象上嗎?如果在某一函數(shù)圖象上,求出該函數(shù)的解析式,并利用你探求的結(jié)果,求出當n=10時,s的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013-2014學(xué)年北京海淀區(qū)九年級第一學(xué)期期中測評數(shù)學(xué)試卷(解析版) 題型:解答題

閱讀下面的材料:

小明在研究中心對稱問題時發(fā)現(xiàn):

如圖1,當點為旋轉(zhuǎn)中心時,點繞著點旋轉(zhuǎn)180°得到點,點再繞著點旋轉(zhuǎn)180°得到點,這時點與點重合.

如圖2,當點為旋轉(zhuǎn)中心時,點繞著點旋轉(zhuǎn)180°得到點,點繞著點旋轉(zhuǎn)180°得到點,點繞著點旋轉(zhuǎn)180°得到點,點繞著點旋轉(zhuǎn)180°得到點,小明發(fā)現(xiàn)P、兩點關(guān)于點中心對稱.

(1)請在圖2中畫出點, 小明在證明P、兩點關(guān)于點中心對稱時,除了說明P、、三點共線之外,還需證明;

(2)如圖3,在平面直角坐標系xOy中,當、、為旋轉(zhuǎn)中心時,點繞著點旋轉(zhuǎn)180°得到點;點繞著點旋轉(zhuǎn)180°得到點;點繞著點旋轉(zhuǎn)180°得到點;點繞著點旋轉(zhuǎn)180°得到點. 繼續(xù)如此操作若干次得到點,則點的坐標為(),點的坐為.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

在數(shù)學(xué)上,為了確定平面上點的位置,我們常用下面的方法:如圖甲,在平面內(nèi)畫兩條互相垂直,并且有公共原點O的數(shù)軸,通常一條畫成水平,叫x軸,另一條畫成鉛垂,叫y軸,這樣,我們就說在平面上建立了一個平面直角坐標系,這是由法國數(shù)學(xué)家和哲學(xué)家笛卡爾創(chuàng)立的,這樣我們就能確定平面上點的位置,例如,要確定點M的位置,只要作MP⊥x軸,MP⊥y軸,設(shè)垂足N,P在各自數(shù)軸上所表示的數(shù)分別為x,y,則x叫做點M的橫坐標,y叫做點M的縱坐標,有序數(shù)對(x,y)叫做M點的坐標,如圖甲,點M的坐標記作(2,3),
(1)△ABC在平面直角坐標系中的位置如圖乙,請把△ABC向右平移3個單位,在平面直角坐標系中畫出平移后的△A′B′C′;
(2)請寫出平移后點A′的坐標,記作______.

查看答案和解析>>

同步練習(xí)冊答案