【題目】(1)如圖①,在平行四邊形ABCD中,AC、BD交于點O,過點O作直線EF分別交AD、BC于點E、F,
求證:OE=OF.
(2)在圖①中,過點O作直線GH分別交AB、CD于點G、H,且滿足GH⊥EF,連結EG、GF、FH、HE.如圖②,試判斷四邊形EGFH的形狀,并說明理由;
(3)在(2)的條件下,
若平行四邊形ABCD變?yōu)榫匦螘r,四邊形EGFH是 ;
若平行四邊形ABCD變?yōu)榱庑螘r,四邊形EGFH是 ;
若平行四邊形ABCD變?yōu)檎叫螘r,四邊形EGFH是 .
【答案】(1)見解析(2)見解析(3)菱形;菱形;正方形
【解析】
試題分析:(1)由于平行四邊形對角線的交點是它的對稱中心,即可得出OE=OF、OG=OH;根據(jù)對角線互相平分的四邊形是平行四邊形即可判斷出EGFH的性質;
(2)當EF⊥GH時,平行四邊形EGFH的對角線互相垂直平分,故四邊形EGFH是菱形;
(3)若平行四邊形ABCD變?yōu)榫匦危碅C=BD時,對四邊形EGFH的形狀不會產(chǎn)生影響,故結論同(2);
若平行四邊形ABCD變?yōu)榱庑,即AC⊥BD時,對四邊形EGFH的形狀不會產(chǎn)生影響,故結論同(2);
當四邊形ABCD是正方形,則對角線相等且互相垂直平分;可通過證△BOG≌△COF,得OG=OF,從而證得菱形的對角線相等,根據(jù)對角線相等的菱形是正方形即可判斷出EGFH的形狀.
(1)證明:∵四邊形ABCD是平行四邊形,
∴AO=CO,AD∥BC,
∴∠DAC=∠BCA,
在△AOE和△COF中,
,
∴△AOE≌△COF(AAS),
∴EO=FO;
(2)解:四邊形EGFH是菱形;
理由:如圖②:
由(1)可知,OE=OF,
同理可得:OG=OH,
∴四邊形EGFH是平行四邊形,
又∵EF⊥GH,
∴四邊形EGFH是菱形;
(3)解:若平行四邊形ABCD變?yōu)榫匦螘r,四邊形EGFH是菱形;
理由:由(2)知四邊形EGFH是菱形,
當AC=BD時,對四邊形EGFH的形狀不會產(chǎn)生影響;
故答案為:菱形;
若平行四邊形ABCD變?yōu)榱庑螘r,四邊形EGFH是菱形;
理由:由(2)知四邊形EGFH是菱形,
當AC⊥BD時,對四邊形EGFH的形狀不會產(chǎn)生影響;
故答案為:菱形;
若平行四邊形ABCD變?yōu)檎叫螘r,四邊形EGFH是四邊形EGFH是正方形;
理由:∵四邊形ABCD是正方形,
∴∠BOC=90°,∠GBO=∠FCO=45°,OB=OC;
∵EF⊥GH,
∴∠GOF=90°;
∠BOG+∠BOF=∠COF+∠BOF=90°
∴∠BOG=∠COF;
在△BOG和△COF中
,
∴△BOG≌△COF(ASA);
∴OG=OF,
同理可得:EO=OH,
∴GH=EF;
由(3)知四邊形EGFH是菱形,
又EF=GH,
∴四邊形EGFH是正方形.
故答案為:正方形.
科目:初中數(shù)學 來源: 題型:
【題目】如圖①,南京中山陵的臺階拾級而上被分成坡度不等的兩部分.圖②是臺階的側面圖,若斜坡BC長為120m,在C處看B處的仰角為25°;斜坡AB長70m,在A處看B處的俯角為50°,試求出陵墓的垂直高度AE的長.
(參考數(shù)據(jù):sin50°≈0.77,cos50°≈0.64,tan50°≈1.19,sin25°≈0.42,cos25°≈0.91,tan25°≈0.47)
考點:解直角三角形的應用-仰角俯角問題.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,直線y=kx+b與x軸交于點A,與y軸交于點B,且四邊形AOBC是矩形,BC=6,矩形AOBC的面積為18.
(1)求線段OC的長.
(2)求直線AB的解析式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一位“粗心”的同學在做加減運算時,將“-100”錯寫成“+100”進行運算,這樣他得到的結果比正確答案( )
A. 少100 B. 少200 C. 多100 D. 多200
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知直線y=ax+b(a≠0)經(jīng)過第一,二,四象限,那么直線y=bx-a一定不經(jīng)過( )
A. 第一象限
B. 第二象限
C. 第三象限
D. 第四象限
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(請在括號里注明重要的推理依據(jù))
如圖,已知AM∥BN,∠A=60°.點P是射線AM上一動點(與點A不重合),BC、BD分別平分∠ABP和∠PBN,分別交射線AM于點C,D.
(1)求∠CBD的度數(shù);
(2)當點P運動時,∠APB與∠ADB之間的數(shù)量關系是否隨之發(fā)生變化?若不變化,請寫出它們之間的關系,并說明理由;若變化,請寫出變化規(guī)律.
(3)當點P運動到使∠ACB=∠ABD時,∠ABC的度數(shù)是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知P(﹣3,m)和 Q(1,m)是拋物線y=x2+bx﹣3上的兩點.
(1)求b的值;
(2)將拋物線y=x2+bx﹣3的圖象向上平移k(是正整數(shù))個單位,使平移后的圖象與x軸無交點,求k的最小值;
(3)將拋物線y=x2+bx﹣3的圖象在x軸下方的部分沿x軸翻折,圖象的其余部分保持不變,得到一個新的圖象,請你結合新圖象回答:當直線y=x+n與這個新圖象有兩個公共點時,求n的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com