【題目】如圖,在中,D、E分別是邊AC、BC上的點,若≌≌,,則 ______ cm.
【答案】20
【解析】
根據(jù)全等三角形對應角相等,易得∠A=∠DEB=∠DEC,∠ADB=∠EDB=∠EDC;接下來根據(jù)平角的定義可得∠DEB+∠DEC=180°,∠ADB+∠EDB+∠EDC=180°,此時可得∠A=∠DEB=∠DEC=90°,∠ADB=∠EDB=∠EDC=60°,最后根據(jù)三角形內角和定理即可得到∠C的度數(shù),進而可求出BC的長.
∵△ADB≌△EDB≌△EDC,
∴∠A=∠DEB=∠DEC,∠ADB=∠EDB=∠EDC,
∵∠DEB+∠DEC=180°,∠ADB+∠EDB+∠EDC=180°,
∴∠A=∠DEB=∠DEC=90°,∠ADB=∠EDB=∠EDC=60°.
∵在Rt△DEC中,∠DEC=90°,∠EDC=60°,
∴∠C=30°,
∴BC=2AB=2×10=20 cm.
科目:初中數(shù)學 來源: 題型:
【題目】已知一次函數(shù)的圖象經(jīng)過點A(0,3)且與兩坐標軸所圍成的三角形的面積為3,則這個一次函數(shù)的表達式為( )
A. y=1.5x+3 B. y=-1.5x+3 C. y=1.5x+3或y=-1.5x+3 D. 無法確定
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB=AC,CD⊥AB于D,BE⊥AC于E,BE與CD相交于點O.
(1)求證:AD=AE;
(2)連接OA,BC,試判斷直線OA,BC的關系并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】計算:(直接寫出結果)
(1)(﹣6)+(﹣14)=
(2)﹣8﹣(﹣8)=
(3)12+(﹣15)=
(4)+(+16)﹣(+4)=
(5)0﹣(﹣7)=
(6)﹣4×(﹣5)=
(7)0×(﹣15)=
(8)﹣15÷(﹣)=
(9)(﹣3)3=
(10)﹣52=
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為弘揚中華優(yōu)秀傳統(tǒng)文化,我市教育局在全市中小學積極推廣“太極拳”運動.弘孝中學為爭創(chuàng)“太極拳”示范學校,今年3月份舉行了“太極拳”比賽,比賽成績評定為A,B,C,D,E五個等級,該校七(1)班全體學生參加了學校的比賽,并將比賽結果繪制成如下兩幅不完整的統(tǒng)計圖.請根據(jù)圖中信息,解答下列問題:
(1)該校七(1)班共有△名學生;扇形統(tǒng)計圖中C等級所對應扇形的圓心角等于△度;并補全條形統(tǒng)計圖;
(2)A等級的4名學生中有2名男生,2名女生,現(xiàn)從中任意選取2名學生作為全班訓練的示范者,請你用列表法或畫樹狀圖的方法,求出恰好選到1名男生和1名女生的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示的數(shù)陣是由50個偶數(shù)排成的.
(1)圖中框內的4個數(shù)有什么關系?
(2)在數(shù)陣圖中任意作一類似于(1)中的框,設其中的一個數(shù)為,那么其他三個數(shù)怎樣表示?
(3)如果四個數(shù)的和是172,能否求出這4個數(shù)?
(4)如果四個數(shù)的和是322,能否求出這4個數(shù)?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某中學計劃購進甲、乙兩種學具,已知一件甲種學具的進價與一件乙種學具的進價的和為40元,用90元購進甲種學具的件數(shù)與用150元購進乙種學具的件數(shù)相同.
求每件甲種、乙種學具的進價分別是多少元?
該學校計劃購進甲、乙兩種學縣共100件,此次進貨的總資金不超過2000元,求最少購進甲種玩具多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】探究
問題1 已知:如圖1,三角形ABC中,點D是AB邊的中點,AE⊥BC,BF⊥AC,垂足分別為點E,F(xiàn),AE,BF交于點M,連接DE,DF.若DE=kDF,則k的值為 .
拓展
問題2 已知:如圖2,三角形ABC中,CB=CA,點D是AB邊的中點,點M在三角形ABC的內部,且∠MAC=∠MBC,過點M分別作ME⊥BC,MF⊥AC,垂足分別為點E,F(xiàn),連接DE,DF.求證:DE=DF.
推廣
問題3 如圖3,若將上面問題2中的條件“CB=CA”變?yōu)?/span>“CB≠CA”,其他條件不變,試探究DE與DF之間的數(shù)量關系,并證明你的結論.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com