如圖,在一張矩形紙片ABCD中,AD=4cm,點(diǎn)E,F(xiàn)分別是CD和AB的中點(diǎn).現(xiàn)將這張紙片折疊,使點(diǎn)B落在EF上的點(diǎn)G處,折痕為AH.若HG的延長線恰好經(jīng)過點(diǎn)D,則CD的長為(  )
A.2cmB.cmC.4cmD.cm
A.

試題分析:設(shè)CD=AB=x,則
∵點(diǎn)E,F(xiàn)分別是CD和AB的中點(diǎn),∴DE=AF=.
∵現(xiàn)將這張紙片折疊,使點(diǎn)B落在EF上的點(diǎn)G處,折痕為AH,∴AG=AB=x,∠AGH=∠B=900.
∵HG的延長線恰好經(jīng)過點(diǎn)D,∴∠AGD=∠AGH=900.
在Rt△AGD中,AD=4cm,AG=x,根據(jù)勾股定理得.
易得△DEG∽△AGD,∴,即,解得.
故選A.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,已知平行四邊形紙片ABCD的周長為20,將紙片沿某條直線折疊,使點(diǎn)D與點(diǎn)B重合,折痕交AD于點(diǎn)E,交BC于點(diǎn)F,連接BE,則△ABE的周長為       

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖1,在△ABC中,E、D分別為AB、AC上的點(diǎn),且ED//BC,O為DC中點(diǎn),連結(jié)EO并延長交BC的延長線于點(diǎn)F,則有S四邊形EBCD=SEBF.
(1)如圖2,在已知銳角∠AOB內(nèi)有一個(gè)定點(diǎn)P.過點(diǎn)P任意作一條直線MN,分別交射線OA、OB于點(diǎn)M、N.將直線MN繞著點(diǎn)P旋轉(zhuǎn)的過程中發(fā)現(xiàn),當(dāng)直線MN滿足某個(gè)條件時(shí),△MON的面積存在最小值.直接寫出這個(gè)條件:_______________________.
(2)如圖3,在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),點(diǎn)A、B、C、P的坐標(biāo)分別為(6,0)、(6,3)、(,)、(4、2),過點(diǎn)P的直線l與四邊形OABC一組對邊相交,將四邊形OABC分成兩個(gè)四邊形,求其中以點(diǎn)O為頂點(diǎn)的四邊形面積的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知:AB∥CD,BE⊥AD,垂足為點(diǎn)E,CF⊥AD,垂足為點(diǎn)F,并且AE=DF.
求證:四邊形BECF是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在Rt△ABC中,∠B=90°,AC=60,AB=30。點(diǎn)D是AC上的動點(diǎn),過D作DF⊥BC于F,再過F作FE//AC,交AB于E。設(shè)CD=x,DF=y.
(1)求y與x的函數(shù)關(guān)系式;
(2)當(dāng)四邊形AEFD為菱形時(shí),求x的值;
(3)當(dāng)△FED是直角三角形時(shí),求x的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知⊙O的半徑為1,DE是⊙O的直徑,過點(diǎn)D作⊙O的切線AD,C是AD的中點(diǎn),AE交⊙O于B點(diǎn),四邊形BCOE是平行四邊形.
(1)求AD的長;
(2)BC是⊙O的切線嗎?若是,給出證明;若不是,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,四邊形ABCD為矩形,四邊形AEDF為菱形.
(1)求證:△ABE≌△DCE;
(2)試探究:當(dāng)矩形ABCD邊長滿足什么關(guān)系時(shí),菱形AEDF為正方形?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在等邊△ABC中,點(diǎn)D是BC邊的中點(diǎn),以AD為邊作等邊△ADE

(1)求∠CAE的度數(shù);
(2)取AB邊的中點(diǎn)F,連結(jié)CF、CE,試證明四邊形AFCE是矩形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

矩形具有而菱形不一定具有的性質(zhì)是  (  )
A.對角線互相垂直B.對角線相等C.對角線互相平分D.對角互補(bǔ)

查看答案和解析>>

同步練習(xí)冊答案