如圖,直角梯形OABC中,AB∥OC,O為坐標(biāo)原點(diǎn),點(diǎn)A在y軸正半軸上,點(diǎn)C在x軸正半軸上,點(diǎn)B坐標(biāo)為(2,),∠BCO=60°,OH⊥BC于點(diǎn)H.動(dòng)點(diǎn)P從點(diǎn)H出發(fā),沿線段HO向點(diǎn)O運(yùn)動(dòng),動(dòng)點(diǎn)Q從點(diǎn)O出發(fā),沿線段OA向點(diǎn)A運(yùn)動(dòng),兩點(diǎn)同時(shí)出發(fā),速度都為每秒1個(gè)單位長(zhǎng)度.設(shè)點(diǎn)P運(yùn)動(dòng)的時(shí)間為t秒.

(1)求OH的長(zhǎng);
(2)若△OPQ的面積為S(平方單位).求S與t之間的函數(shù)關(guān)系式.并求t為何值時(shí),△OPQ的面積最大,最大值是多少;
(3)設(shè)PQ與OB交于點(diǎn)M.①當(dāng)△OPM為等腰三角形時(shí),求(2)中S的值. ②探究線段OM長(zhǎng)度的最大值是多少,直接寫出結(jié)論.

2;

解析試題分析:(1)∵AB∥OC
∴∠OAB=∠AOC=90°
在Rt△OAB中,AB=2,AO=2 
∴OB=4,∠ABO=60°
∴∠BOC=60°而∠BCO=60°
∴△BOC為等邊三角形

∴OH=OBcos30°=4×=2;      2分
(2)∵OP="OH-PH=2" -t
∴Xp="OPcos30°=3-" t   Yp="OPsin30°=" -
∴S= •OQ•Xp= •t•(3- t)
=(o<t<2
當(dāng)t=時(shí),S最大= ;            5分
(3)①若△OPM為等腰三角形,則:
(i)若OM=PM,∠MPO=∠MOP=∠POC
∴PQ∥OC
∴OQ=yp即t= -
解得:t= 
此時(shí)S=
(ii)若OP=OM,∠OPM=∠OMP=75°∴∠OQP=45°
過(guò)P點(diǎn)作PE⊥OA,垂足為E,則有:EQ=EP
即t-( - t)="3-" t
解得:t=2
此時(shí)S= 
(iii)若OP=PM,∠POM=∠PMO=∠AOB∴PQ∥OA
此時(shí)Q在AB上,不滿足題意.       10分
②線段PM長(zhǎng)的最大值為 .          12分
考點(diǎn):二次函數(shù)的綜合題
點(diǎn)評(píng):此題將用待定系數(shù)法求二次函數(shù)解析式、動(dòng)點(diǎn)問(wèn)題和最小值問(wèn)題相結(jié)合,有較大的思維

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,直角梯形OABC的直角頂點(diǎn)O是坐標(biāo)原點(diǎn),邊OA,OC分別在x軸、y軸的正半軸上,OA∥BC,D是BC上一點(diǎn),BD=
1
4
OA=
2
,AB=3,∠OAB=45°,E、F分別是線段OA、AB上的兩動(dòng)點(diǎn),且始終保持∠DEF=45°.
精英家教網(wǎng)
(1)直接寫出D點(diǎn)的坐標(biāo);
(2)設(shè)OE=x,AF=y,試確定y與x之間的函數(shù)關(guān)系;
(3)將△AEF沿一條邊翻折,翻折前后兩個(gè)三角形組成的四邊形能否成為菱形?若能,請(qǐng)直接寫出符合條件的x值;若不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,直角梯形OABF中,∠OAB=∠B=90°,A點(diǎn)在x軸上,雙曲線y=
k
x
過(guò)點(diǎn)F,與AB交于E點(diǎn),連EF,若
BF
OA
=
2
3
,S△BEF=4,則k=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,直角梯形OABC中,∠OAB=∠B=90°,A點(diǎn)在x軸上,雙曲線y=
kx
過(guò)點(diǎn)C和AB中點(diǎn)D,若S梯形OABC=6,則該雙曲線的解析式為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,直角梯形OABC的直角頂點(diǎn)O是坐標(biāo)原點(diǎn),邊OA,OC分別在x軸、y軸的正半軸上,OA∥BC,D精英家教網(wǎng)是BC上一點(diǎn),BD=
1
4
OA=
2
,AB=3,∠OAB=45°,E、F分別是線段OA、AB上的兩動(dòng)點(diǎn),且始終保持∠DEF=45°.
(1)直接寫出D點(diǎn)的坐標(biāo);
(2)設(shè)OE=x,AF=y,試確定y與x之間的函數(shù)關(guān)系;
(3)當(dāng)△AEF是等腰三角形時(shí),將△AEF沿EF折疊,得到△A'EF,求△A'EF與五邊形OEFBC重疊部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖.直角梯形OABC的直角頂點(diǎn)O是坐標(biāo)原點(diǎn),邊OA,OC分別在x軸、y軸的正半軸上.OA∥BC,OA=4
2
,OC=
3
2
2

∠OAB=45°,D是BC上一點(diǎn),CD=
3
2
2
.E、F分別是線段OA、AB上的兩動(dòng)點(diǎn),且始終保持∠DEF=45°,設(shè)OE=x,AF=y.
(1)AB=
 
,BC=
 
,∠DOE=
 
;
(2)證明△ODE∽△AEF,并確定y與x之間的函數(shù)關(guān)系;
(3)當(dāng)AF=EF時(shí),將△AEF沿EF折疊,得到△A′EF,求△A′EF與五邊形OEFBC重疊部分的面積.
精英家教網(wǎng)

查看答案和解析>>

同步練習(xí)冊(cè)答案