【題目】18世紀(jì)最杰出的瑞士數(shù)學(xué)家歐拉,最先把關(guān)于x的多項(xiàng)式用符號“f(x)”表示,如f(x)=﹣3x2+2x﹣1,把x=﹣2時多項(xiàng)式的值表示為f(﹣2),則f(﹣2)=_____.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知直線,直線與直線、分別相交于C、D兩點(diǎn).
(1)如圖a,有一動點(diǎn)P在線段CD之間運(yùn)動(不與C、D兩點(diǎn)重合),問在點(diǎn)P的運(yùn)動過程中,是否始終具有∠3+∠1=∠2這一關(guān)系,為什么?
(2)如圖b,當(dāng)動點(diǎn)P線段CD之外運(yùn)動(不與C、D兩點(diǎn)重合),問上述結(jié)論是否成立?若不成立,試寫出新的結(jié)論并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)閱讀理解:如圖①,在四邊形ABCD中,AB∥DC,E是BC的中點(diǎn),若AE是∠BAD的平分線,試判斷AB,AD,DC之間的等量關(guān)系.
解決此問題可以用如下方法:延長AE交DC的延長線于點(diǎn)F,易證△AEB≌△FEC,得到AB=FC,從而把AB,AD,DC轉(zhuǎn)化在一個三角形中即可判斷.
AB、AD、DC之間的等量關(guān)系為 ;
(2)問題探究:如圖②,在四邊形ABCD中,AB∥DC,AF與DC的延長線交于點(diǎn)F,E是BC的中點(diǎn),若AE是∠BAF的平分線,試探究AB,AF,CF之間的等量關(guān)系,并證明你的結(jié)論.
(3)問題解決:如圖③,AB∥CF,AE與BC交于點(diǎn)E,BE:EC=2:3,點(diǎn)D在線段AE上,且∠EDF=∠BAE,試判斷AB、DF、CF之間的數(shù)量關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠BAC=90°,BD⊥DE,CE⊥DE,添加下列條件后仍不能使△ABD≌△CAE的條件是( 。
A. AD=AE B. AB=AC C. BD=AE D. AD=CE
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,點(diǎn)D,E分別是邊BC,AB上的中點(diǎn),連接DE并延長至點(diǎn)F,使EF=2DF,連接CE、AF.
(1)證明:AF=CE;
(2)當(dāng)∠B=30°時,試判斷四邊形ACEF的形狀并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)軸上A,B兩點(diǎn)對應(yīng)的數(shù)分別為a,b,且a,b滿足|a+20|=﹣(b﹣13)2,點(diǎn)C對應(yīng)的數(shù)為16,點(diǎn)D對應(yīng)的數(shù)為﹣13.
(1)求a,b的值;
(2)點(diǎn)A,B沿?cái)?shù)軸同時出發(fā)相向勻速運(yùn)動,點(diǎn)A的速度為6個單位/秒,點(diǎn)B的速度為2個單位/秒,若t秒時點(diǎn)A到原點(diǎn)的距離和點(diǎn)B到原點(diǎn)的距離相等,求t的值;
(3)在(2)的條件下,點(diǎn)A,B從起始位置同時出發(fā).當(dāng)A點(diǎn)運(yùn)動到點(diǎn)C時,迅速以原來的速度返回,到達(dá)出發(fā)點(diǎn)后,又折返向點(diǎn)C運(yùn)動.B點(diǎn)運(yùn)動至D點(diǎn)后停止運(yùn)動,當(dāng)B停止運(yùn)動時點(diǎn)A也停止運(yùn)動.求在此過程中,A,B兩點(diǎn)同時到達(dá)的點(diǎn)在數(shù)軸上對應(yīng)的數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】芯片是手機(jī)、電腦等高科技產(chǎn)品最核心的部件,更小的芯片意味著更高的性能.目前我國芯片的量產(chǎn)工藝已達(dá)到14納米,已知14納米為0.000000014米,則0.000000014科學(xué)記數(shù)法表示為( )
A.1.4×10﹣8B.1.4×10﹣9C.1.4×10﹣10D.14×10﹣9
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB∥CD,CE,BE的交點(diǎn)為E,現(xiàn)作如下操作:
第一次操作,分別作∠ABE和∠DCE的平分線,交點(diǎn)為E1,
第二次操作,分別作∠ABE1和∠DCE1的平分線,交點(diǎn)為E2,
第三次操作,分別作∠ABE2和∠DCE2的平分線,交點(diǎn)為E3……
第n次操作,分別作∠ABEn-1和∠DCEn-1的平分線,交點(diǎn)為En.
(1)如圖①,求證:∠E=∠B+∠C;
(2)如圖②,求證:∠E1=∠E;
(3)猜想:若∠En=b°,求∠BEC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】從某市近期賣出的不同面積的商 品房中隨機(jī)抽取1000套進(jìn)行統(tǒng)計(jì),并根據(jù)結(jié)果繪出如圖所示的統(tǒng)計(jì)圖,請結(jié)合圖中的信息,解析下列問題:
(1)賣出面積為110~130平方米的商品房 有___套,并在右圖中補(bǔ)全統(tǒng)計(jì)圖.
(2)從圖中可知,賣出最多的商品房約占全部賣出的商品房的___%.
(3)假如你是房地產(chǎn)開發(fā)商,根據(jù)以上提供的信息,你會多建住房面積在什么范圍內(nèi)的住房?為什么?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com