已知點)在第四象限,且||=3,||=5,則點的坐標是______.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)已知拋物線y=x2+(2m-1)x+m2-1(m為常數(shù)).
(1)當該拋物線經(jīng)過坐標原點,并且頂點在第四象限時,求出它所對應的函數(shù)關系式;
(2)設(1)中的拋物線與x軸的另一個交點為Q,拋物線的頂點為P,試求經(jīng)過O、P、Q三點的圓的圓心O′的坐標;
(3)設A是(1)所確定的拋物線上位于x軸下方、且在對稱軸左側(cè)的一個動點,過A作x軸的平行線,交拋物線于另一點D,再作AB⊥x軸于B,DC⊥x軸于C,
①當BC=1時,求矩形ABCD的周長;
②試問矩形ABCD的周長是否存在最大值?如果存在,請求出這個最大值,并指出此時A點的坐標;如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知拋物線y=x2+(2n-1)x+n2-1(n為常數(shù)).
(1)當該拋物線經(jīng)過坐標原點,并且頂點在第四象限時,求出它所對應的函數(shù)關系式;
(2)設A是(1)所確定的拋物線上位于x軸下方、且在對稱軸左側(cè)的一個動點,過A作x軸的平行線,交拋物線于另一點D,再作AB⊥x軸于B,DC⊥x軸于C.
①當BC=1時,求矩形ABCD的周長;
②試問矩形ABCD的周長是否存在最大值?如果存在,請求出這個最大值,并指出此時A點的坐標.如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•嘉定區(qū)二模)已知平面直角坐標系xOy(如圖),拋物線y=
1
2
x
2
+bx+c
經(jīng)過點A(-3,0)、C(0,-
3
2
).
(1)求該拋物線頂點P的坐標;
(2)求tan∠CAP的值;
(3)設Q是(1)中所求出的拋物線的一個動點,點Q的橫坐標為t,當點Q在第四象限時,用含t的代數(shù)式表示△QAC的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:在平面直角坐標系中,△ABC的頂點A、C分別在y軸、x軸上,且∠ACB=90°,AC=BC.
(1)如圖1,當A(0,-2),C(1,0),點B在第四象限時,則點B的坐標為
(3,-1),
(3,-1),
;
(2)如圖2,當點C在x軸正半軸上運動,點A在y軸正半軸上運動,點B在第四象限時,作BD⊥y軸于點D,試判斷
OC+BD
OA
OC-BD
OA
哪一個是定值,并說明定值是多少?請證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:在平面直角坐標系中,等腰直角△ABC頂點A、C分別在y軸、x軸上,且∠ACB=90°,AC=BC.
(1)如圖1,當A(0,-2),C(1,0),點B在第四象限時,先寫出點B的坐標,并說明理由.
(2)如圖2,當點C在x軸正半軸上運動,點A(0,a)在y軸正半軸上運動,點B(m,n)在第四象限時,作BD⊥y軸于點D,試判斷a,m,n之間的關系,請證明你的結(jié)論.

查看答案和解析>>

同步練習冊答案