【題目】如圖,在平面直角坐標系中,已知正比例函數(shù)的圖象與反比例函數(shù)的圖象交于,兩點.
(1)反比例函數(shù)的解析式為____________,點的坐標為___________;
(2)觀察圖像,直接寫出的解集;
(3)是第一象限內(nèi)反比例函數(shù)的圖象上一點,過點作軸的平行線,交直線于點,連接,若的面積為3,求點的坐標.
【答案】(1)y=;(4,2);(2)x<-4或0<x<4;(3)P(2, )或P(2,4).
【解析】
(1)把A(a,-2)代入y=x,可得A(-4,-2),把A(-4,-2)代入y=,可得反比例函數(shù)的表達式為y=,再根據(jù)點B與點A關(guān)于原點對稱,即可得到B的坐標;
(2)觀察函數(shù)圖象,由交點坐標即可求解;
(3)設(shè)P(m,),則C(m,m),根據(jù)△POC的面積為3,可得方程m×|m-|=3,求得m的值,即可得到點P的坐標.
(1)把A(a,-2)代入y=x
可得a=-4,
∴A(-4,-2),
把A(-4,-2)代入y=,可得k=8,
∴反比例函數(shù)的表達式為y=,
∵點B與點A關(guān)于原點對稱,
∴B(4,2).
故答案為:y=;(4,2);
(2)x-<0的解集是x<-4或0<x<4;
(3)設(shè)P(m,),則C(m,m),
依題意,得m|m-|=3,
解得m=2或m=2,(負值已舍去).
∴P(2, )或P(2,4).
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在正方形網(wǎng)格圖中建立平面直角坐標系,一條圓弧經(jīng)過格點、、,若該圓弧所在圓的圓心為點,請你利用網(wǎng)格圖回答下列問題:
(1)圓心的坐標為_____;
(2)若扇形是一個圓錐的側(cè)面展開圖,求該圓錐底面圓的半徑長(結(jié)果保留根號).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】官渡區(qū)某校八年級(1)班同學為了解某市2019年小區(qū)家庭月均用水情況,隨機調(diào)查了該小區(qū)都分家庭,并將調(diào)查數(shù)據(jù)進行如下整理:
月均用水量(噸) | 頻數(shù)(戶) | 頻率 |
6 | 0.12 | |
0.24 | ||
16 | 0.32 | |
10 | 0.20 | |
4 | ||
2 | 0.04 |
請解答下列問題:
(1)填空:樣本容量是______,______,_______;
(2)把頻數(shù)分布直方圖補充完整;
(3)若該小區(qū)有1000戶家庭,請估計該小區(qū)月均用水量滿足的家庭有多少戶?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某市將開展演講比賽活動,某校對參加選拔的學生的成績按A、B、C、D四個等級進行統(tǒng)計,繪制了如下不完整的統(tǒng)計表和扇形統(tǒng)計圖,
成績等級 | 頻數(shù) | 頻率 |
A | 4 | n |
B | m | 0.51 |
C | ||
D | 15 |
(1)求m、n的值;
(2)求“C等級”所對應的扇形圓心角的度數(shù);
(3)已知成績等級為A的4名學生中有1名男生和3名女生,現(xiàn)從中隨機挑選2名學生代表學校參加全市比賽,求出恰好選中一男生和一女生的概率
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】“倡導全民閱讀”“推動國民素質(zhì)和社會文明程度顯著提高”已成為“十三五”時期的重要工作.某中學在全校學生中隨機抽取了部分學生對2018年度閱讀情況進行問卷調(diào)查,并將收集的數(shù)據(jù)統(tǒng)計如表
數(shù)量/本 | 15 | 11 | 8 | 4 | 3 | 2 |
人數(shù) | 80 | 60 | 50 | 100 | 40 | 70 |
根據(jù)表中的信息判斷,下列結(jié)論錯誤的是( )
A. 該校參與調(diào)查的學生人數(shù)為400人
B. 該校學生2018年度閱讀書數(shù)量的中位數(shù)為4本
C. 該校學生2018年度閱讀書數(shù)量的眾數(shù)為4本
D. 該校學生2018年平均每人閱讀8本書
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】學生在素質(zhì)教育基地進行社會實踐活動,幫助農(nóng)民伯伯采摘了黃瓜和茄子共40kg,了解到這些蔬菜的種植成本共42元,還了解到如下信息:
(1)請問采摘的黃瓜和茄子各多少千克?
(2)這些采摘的黃瓜和茄子可賺多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點A(-3,0)、點B(0,),直線與x軸、y軸分別交于點D、C,M是平面內(nèi)一動點,且∠AMB=60°,則MCD面積的最小值是 ________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com