(2010•鄂州)工程師有一塊長AD為12分米,寬AB為8分米的鐵板,截去了長AE=2分米,AF=4分米的直角三角形,在余下的五邊形中結(jié)的矩形MGCH,M必須在線段EF上.
(1)若截得矩形MGCH的面積為70平方分米,求矩形MGCH的長和寬.
(2)當EM為多少時,矩形MGCH的面積最大?并求此時矩形的周長.

【答案】分析:(1)作MN⊥AE,設矩形的長為x,寬為y由“”和“S=xy”求得長和寬;
(2)設EM長為a,矩形MGCH的面積用MH、MG表示,由比值關(guān)系把S表示為a的函數(shù)式,求得最大值.
解答:解:(1)作MN⊥AE,設矩形的長為x分米,寬為y分米;
∵MN⊥AE,
∴MN∥AF,
∴△EMN∽△EFA

又∵MN=AD-x=12-x
NE=y-(AB-AE)=y-6
AF=4,AE=2

S=xy=70
解得:x=10,y=7
答:矩形MGCH的長和寬分別為10分米和7分米.

(2)設EM長為a,△EMN∽△EFA,
EF==2,MN=,NE=,
MH=AD-MN=12-,MG=BE+EN=AB-AE+EN=6+
∴S=MH×MG
=(12-)×( 6+
=
由此,a=0時,面積最大即M點與E點重合.
此時的周長L=2MH+2MG=36分米.
答:當EM為0時,矩形MGCH的面積最大,并求此時矩形的周長為36分米.
點評:本題考查了我們由幾何關(guān)系列出函數(shù)關(guān)系并求最值的能力.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:2010年湖北省鄂州市中考數(shù)學試卷(解析版) 題型:解答題

(2010•鄂州)如圖,在直角坐標系中,A(-1,0),B(0,2),一動點P沿過B點且垂直于AB的射線BM運動,P點的運動速度為每秒1個單位長度,射線BM與x軸交于點C.
(1)求點C的坐標.
(2)求過點A、B、C三點的拋物線的解析式.
(3)若P點開始運動時,Q點也同時從C點出發(fā),以P點相同的速度沿x軸負方向向點A運動,t秒后,以P、Q、C為頂點的三角形是等腰三角形.(點P到點C時停止運動,點Q也同時停止運動),求t的值.
(4)在(2)(3)的條件下,當CQ=CP時,求直線OP與拋物線的交點坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年湖北省鄂州市中考數(shù)學試卷(解析版) 題型:解答題

(2010•鄂州)春節(jié)期間,某客運站旅客流量不斷增大,旅客往往需要很長時間排隊等候購票.經(jīng)調(diào)查發(fā)現(xiàn),每天開始售票時,約有400人排隊購票,同時又有新的旅客不斷進入售票廳排隊等候購票,售票時售票廳每分鐘新增購票人數(shù)4人,每分鐘每個售票窗口出售票數(shù)3張.每一天售票廳排隊等候購票的人數(shù)y(人)與售票時間x(分鐘)的關(guān)系如圖所示,已知售票的前a分鐘只開放了兩個售票窗口(規(guī)定每人只購一張票).
(1)求a的值.
(2)求售票到第60分鐘時售票廳排隊等候購票的旅客人數(shù).
(3)若要在開始售票后半小時內(nèi)讓所有的排隊的旅客都能購到票,以便后來到站的旅客隨到隨購,至少需要同時開放幾個售票窗口?

查看答案和解析>>

科目:初中數(shù)學 來源:2010年湖北省鄂州市中考數(shù)學試卷(解析版) 題型:選擇題

(2010•鄂州)正比例函數(shù)y=x與反比例函數(shù)y=(k≠0)的圖象在第一象限交于點A,且AO=,則k的值為( )

A.
B.1
C.
D.2

查看答案和解析>>

科目:初中數(shù)學 來源:2010年湖北省鄂州市中考數(shù)學試卷(解析版) 題型:解答題

(2010•鄂州)工程師有一塊長AD為12分米,寬AB為8分米的鐵板,截去了長AE=2分米,AF=4分米的直角三角形,在余下的五邊形中結(jié)的矩形MGCH,M必須在線段EF上.
(1)若截得矩形MGCH的面積為70平方分米,求矩形MGCH的長和寬.
(2)當EM為多少時,矩形MGCH的面積最大?并求此時矩形的周長.

查看答案和解析>>

同步練習冊答案