【題目】如圖,在ABCD中,對(duì)角線AC、BD交于點(diǎn)O,并且∠DAC=60°,∠ADB=15°.點(diǎn)E是AD邊上一動(dòng)點(diǎn),延長(zhǎng)EO交BC于點(diǎn)F.當(dāng)點(diǎn)E從D點(diǎn)向A點(diǎn)移動(dòng)過(guò)程中(點(diǎn)E與點(diǎn)D,A不重合),則四邊形AFCE的變化是(
A.平行四邊形→矩形→平行四邊形→菱形→平行四邊形
B.平行四邊形→菱形→平行四邊形→矩形→平行四邊形
C.平行四邊形→矩形→平行四邊形→正方形→平行四邊形
D.平行四邊形→矩形→菱形→正方形→平行四邊形

【答案】B
【解析】解:點(diǎn)E從D點(diǎn)向A點(diǎn)移動(dòng)過(guò)程中,當(dāng)∠EOD<15°時(shí),四邊形AFCE為平行四邊形, 當(dāng)∠EOD=15°時(shí),AC⊥EF,四邊形AFCE為菱形,
當(dāng)15°<∠EOD<30°時(shí),四邊形AFCE為平行四邊形,
當(dāng)∠EOD=75°時(shí),∠AEF=90°,四邊形AFCE為矩形,
當(dāng)30°<∠EOD<105°時(shí),四邊形AFCE為平行四邊形.
故選B.
【考點(diǎn)精析】本題主要考查了平行四邊形的判定與性質(zhì)和菱形的判定方法的相關(guān)知識(shí)點(diǎn),需要掌握若一直線過(guò)平行四邊形兩對(duì)角線的交點(diǎn),則這條直線被一組對(duì)邊截下的線段以對(duì)角線的交點(diǎn)為中點(diǎn),并且這兩條直線二等分此平行四邊形的面積;任意一個(gè)四邊形,四邊相等成菱形;四邊形的對(duì)角線,垂直互分是菱形.已知平行四邊形,鄰邊相等叫菱形;兩對(duì)角線若垂直,順理成章為菱形才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】先化簡(jiǎn),再求值:

(1)(1a)(1a)(a2)2,其中a;

(2)(2x3)(2x3)4x(x1)(x2)2,其中x=-3.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某港口位于東西方向的海岸線上.“遠(yuǎn)航”號(hào)、“海天”號(hào)輪船同時(shí)離開(kāi)港口,各自沿一固定方向航行,“遠(yuǎn)航”號(hào)每小時(shí)航行16海里,“海天”號(hào)每小時(shí)航行12海里.它們離開(kāi)港口 小時(shí)后相距30海里.如果知道“遠(yuǎn)航”號(hào)沿東北方向航行,能知道“海天”號(hào)沿哪個(gè)方向航行嗎?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】ABC中,AB10,AC2,BC邊上的高AD6,則另一邊BC等于_______

【答案】106

【解析】試題解析:根據(jù)題意畫出圖形,如圖所示,

如圖1所示,AB=10,AC=2AD=6,

在RtABD和RtACD中,

根據(jù)勾股定理得:BD==8,CD==2,

此時(shí)BC=BD+CD=8+2=10;

如圖2所示,AB=10,AC=2,AD=6,

在RtABD和RtACD中,

根據(jù)勾股定理得:BD==8,CD==2,

此時(shí)BC=BD-CD=8-2=6,

BC的長(zhǎng)為6或10.

型】填空
結(jié)束】
12

【題目】在平面直角坐標(biāo)系中,已知一次函數(shù)y=2x+1的圖象經(jīng)過(guò)P1(x1,y1)、P2(x2,y2)兩點(diǎn),若x1<x2,則y1 ______ y2.(填“>”“<”或“=”)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】高致病性禽流感是比SARS傳染速度更快的傳染。疄榉乐骨萘鞲新,政府規(guī)定:離疫點(diǎn)3km范圍內(nèi)為撲殺區(qū);離疫點(diǎn)3km~5km范圍內(nèi)為免疫區(qū),對(duì)撲殺區(qū)與免疫區(qū)內(nèi)的村莊、道路實(shí)行全封閉管理.現(xiàn)有一條筆直的公路AB通過(guò)禽流感病區(qū),如圖,在撲殺區(qū)內(nèi)公路CD長(zhǎng)為4km.

(1)請(qǐng)用直尺和圓規(guī)找出疫點(diǎn)O(不寫作法,保留作圖痕跡);
(2)求這條公路在免疫區(qū)內(nèi)有多少千米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】ABC中,∠ACB=90°,AC=BC=4,點(diǎn)DAB的中點(diǎn),M,N分別在BC,AC上,且BM=CN現(xiàn)有以下四個(gè)結(jié)論:

DN=DM; NDM=90° 四邊形CMDN的面積為4; ④△CMN的面積最大為2.

其中正確的結(jié)論有(

A. ①②④; B. ①②③; C. ②③④ D. ①②③④.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,∠ABD和∠BDC的平分線交于E,BE交CD于點(diǎn)F,∠1+∠2=90°

(1)試說(shuō)明:AB∥CD;

(2)∠2=35°,求∠BFC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,ABCD,A = D,試說(shuō)明 ACDE 成立的理由.

下面是彬彬同學(xué)進(jìn)行的推理,請(qǐng)你將彬彬同學(xué)的推理過(guò)程補(bǔ)充完整。

解:∵ AB CD (已知)

A = (兩直線平行,內(nèi)錯(cuò)角相等)

又∵ A = D( )

= (等量代換)

AC DE ( )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】x3m+2y27m8,則用x的代數(shù)式表示y_____

查看答案和解析>>

同步練習(xí)冊(cè)答案