【題目】學習全等三角形的判定方法以后,我們知道“已知兩邊和一角分別相等的兩個三角形不一定全等”,但下列兩種情形還是成立的.
(1)第一情形(如圖1)在△ABC和△DEF中,∠C=∠F=90°,AC=DF,AB=DE,則根據(jù)__________,得出△ABC≌△DEF;
(2)第二情形(如圖2)在△ABC和△DEF中,∠C=∠F(∠C和∠F均為鈍角),AC=DF,AB=DE,求證:△ABC≌△DEF.
【答案】(1)HL;(2)證明見解析.
【解析】
(1)根據(jù)直角三角形全等的判定方法HL,可證明△ABC≌△DEF,可得出答案;
(2)可過A作AG⊥BC,交BC的延長線于點G,D點作DH⊥EF,交EF的延長線于點H,可先證明△ACG≌△DFH,可得到AG=DH,再證明△ABG≌△DEH,可得∠B=∠E,可證得結論.
(1)解:AC、DF為直角邊,AB、DE為斜邊,且∠C=∠F=90°,
故可根據(jù)“HL”可證明△ABC≌△DEF,
故答案為:HL;
(2)證明:如圖,過A作AG⊥BC,交BC的延長線于點G,D點作DH⊥EF,交EF的延長線于點H,
∵∠BCA=∠EFD,
∴∠ACG=∠DFH,
在△ACG和△DFH中,
,
∴△ACG≌△DFH(AAS),
∴AG=DH,
在Rt△ABG和Rt△DEH中,
,
∴△ABG≌△DEH(HL),
∴∠B=∠E,
在△ABC和△DEF中,
,
∴△ABC≌△DEF(AAS).
科目:初中數(shù)學 來源: 題型:
【題目】如圖, 是 的中線, 是線段 上一點(不與點 重合). 交 于點 , ,連結 .
(1)如圖1,當點 與 重合時,求證:四邊形 是平行四邊形;
(2)如圖2,當點 不與 重合時,(1)中的結論還成立嗎?請說明理由.
(3)如圖3,延長 交 于點 ,若 ,且 .當 , 時,求 的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了順利通過“國家文明城市”驗收,市政府擬對部分路段的人行道地磚、綠化帶、排水管等公用設施全面更新改造,根據(jù)市政建設的需要,需在40天內(nèi)完成工程.現(xiàn)有甲、乙兩個工程隊有意承包這項工程,經(jīng)調查知道,乙工程隊單獨完成此項工程的時間是甲工程隊單獨完成此項工程時間的2倍,若甲、乙兩工程隊合作只需10天完成.
(1)甲、乙兩個工程隊單獨完成此項工程各需多少天?
(2)若甲工程隊每天的費用是4.5萬元,乙工程隊每天的工程費用是2.5萬元,請你設計一種方案,既能按時完成工程,又能使工程費用最少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如下圖所示,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE于點E,AD⊥CE于點D.DE=6cm,AD=9cm,則BE的長是( )
A. 6cm B. 1.5cm C. 3cm D. 4.5cm
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】隨著移動終端設備的升級換代,手機已經(jīng)成為我們生活中不可缺少的一部分,為了解中學生在假期使用手機的情況(選項:A.和同學親友聊天;B.學習;C.購物;D.游戲;E.其它),端午節(jié)后某中學在全校范圍內(nèi)隨機抽取了若干名學生進行調查,得到如下圖表(部分信息未給出):
選項 | 頻數(shù) | 頻率 |
A | 10 | m |
B | n | 0.2 |
C | 5 | 0.1 |
D | p | 0.4 |
E | 5 | 0.1 |
根據(jù)以上信息解答下列問題:
(1)這次被調查的學生有多少人?
(2)求表中m,n,p的值,并補全條形統(tǒng)計圖.
(3)若該中學約有800名學生,估計全校學生中利用手機購物或玩游戲的共有多少人?并根據(jù)以上調查結果,就中學生如何合理使用手機給出你的一條建議.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCO的邊OA、OC在坐標軸上,點B坐標為(6,6),將正方形ABCO繞點C逆時針旋轉角度α(0°<α<90°),得到正方形CDEF,ED交線段AB于點G,ED的延長線交線段OA于點H,連結CH、CG.
(1)求證:CG平分∠DCB;
(2)在正方形ABCO繞點C逆時針旋轉的過程中,求線段HG、OH、BG之間的數(shù)量關系;
(3)連結BD、DA、AE、EB,在旋轉的過程中,四邊形AEBD是否能在點G滿足一定的條件下成為矩形?若能,試求出直線DE的解析式;若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知如圖,射線CB∥OA,∠C=∠OAB=100°,E、F在CB上,且滿足∠FOB=∠AOB,OE平分∠COF。
(1)求∠EOB的度數(shù);
(2)若平行移動AB,那么∠OBC∶∠OFC的值是否隨之變化?若變化,找出變化規(guī)律;若不變,求出這個比值;
(3)在平行移動AB的過程中,是否存在某種情況,使∠OEC=∠OBA?若存在,求出其度數(shù);若不存在,說明理由。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,兩直線AB,CD相交于點O,OE平分∠BOD,∠AOC∶∠AOD=7∶11.
(1)求∠COE的度數(shù);
(2)若OF⊥OE,求∠COF的度數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com