【題目】如圖1,點(diǎn)A、B分別在數(shù)軸原點(diǎn)O的左右兩側(cè),且 OA+50=OB,點(diǎn)B對(duì)應(yīng)數(shù)是90.
(1)求A點(diǎn)對(duì)應(yīng)的數(shù);
(2)如圖2,動(dòng)點(diǎn)M、N、P分別從原點(diǎn)O、A、B同時(shí)出發(fā),其中M、N均向右運(yùn)動(dòng),速度分別為2個(gè)單位長(zhǎng)度/秒,7個(gè)單位長(zhǎng)度/秒,點(diǎn)P向左運(yùn)動(dòng),速度為8個(gè)單位長(zhǎng)度/秒,設(shè)它們運(yùn)動(dòng)時(shí)間為t秒,問(wèn)當(dāng)t為何值時(shí),點(diǎn)M、N之間的距離等于P、M之間的距離;
(3)如圖3,將(2)中的三動(dòng)點(diǎn)M、N、P的運(yùn)動(dòng)方向改為與原來(lái)相反的方向,其余條件不變,設(shè)Q為線(xiàn)段MN的中點(diǎn),R為線(xiàn)段OP的中點(diǎn),求22RQ﹣28RO﹣5PN的值.
【答案】
(1)解:如圖1,∵點(diǎn)B對(duì)應(yīng)數(shù)是90,
∴OB=90.
又∵ OA+50=OB,即 OA+50=90,
∴OA=120.
∴點(diǎn)A所對(duì)應(yīng)的數(shù)是﹣120
(2)解:依題意得,MN=|(﹣120+7t)﹣2t|=|﹣120+5t|,
PM=|2t﹣(90﹣8t)|=|10t﹣90|,
又∵M(jìn)N=PM,
∴|﹣120+5t|=|10t﹣90|,
∴﹣120+5t=10t﹣90或﹣120+5t=﹣(10t﹣90)
解得t=﹣6或t=14,
∵t≥0,
∴t=14,點(diǎn)M、N之間的距離等于點(diǎn)P、M之間的距離
(3)解:依題意得RQ=( 45+4t)﹣(﹣60﹣4.5t)=105+8.5t,
RO=45+4t,
PN=(90+8t)﹣(﹣120﹣7t)=210+15t,
則22RQ﹣28RO﹣5PN=22(105+8.5t)﹣28(45+4t)﹣5(210+15t)=0
【解析】(1)根據(jù)點(diǎn)B對(duì)應(yīng)的數(shù)求得OB的長(zhǎng)度,結(jié)合已知條件和圖形來(lái)求點(diǎn)A所對(duì)應(yīng)的數(shù);(2)由M、N之間的距離等于P、M之間的距離列式為,列方程求出t;(3)由M、N之間的距離等于P、M之間的距離列式為,列方程求出t,并求出RQ,RO及PN,再求出22RQ﹣28RO﹣5PN的值.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用數(shù)軸和兩點(diǎn)間的距離的相關(guān)知識(shí)可以得到問(wèn)題的答案,需要掌握數(shù)軸是規(guī)定了原點(diǎn)、正方向、單位長(zhǎng)度的一條直線(xiàn);同軸兩點(diǎn)求距離,大減小數(shù)就為之.與軸等距兩個(gè)點(diǎn),間距求法亦如此.平面任意兩個(gè)點(diǎn),橫縱標(biāo)差先求值.差方相加開(kāi)平方,距離公式要牢記.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】教室里的飲水機(jī)接通電源就進(jìn)入自動(dòng)程序,開(kāi)機(jī)加熱時(shí)每分鐘上升10℃,加熱到100℃,停止加熱,水溫開(kāi)始下降,此時(shí)水溫(℃)與開(kāi)機(jī)后用時(shí)(min)成反比例關(guān)系.直至水溫降至30℃,飲水機(jī)關(guān)機(jī).飲水機(jī)關(guān)機(jī)后即刻自動(dòng)開(kāi)機(jī),重復(fù)上述自動(dòng)程序.若在水溫為30℃時(shí),接通電源后,水溫y(℃)和時(shí)間(min)的關(guān)系如圖,為了在上午第一節(jié)下課時(shí)(8:45)能喝到不超過(guò)50℃的水,則接通電源的時(shí)間可以是當(dāng)天上午的( )
A.7:20 B.7:30 C.7:45 D.7:50
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某機(jī)動(dòng)車(chē)出發(fā)前油箱內(nèi)有油42升,行駛?cè)舾尚r(shí)后,途中在加油站加油若干升.油箱 中剩余油量(升)與行駛時(shí)間(時(shí))的 函數(shù)關(guān)系如圖所示,根據(jù)圖象回答問(wèn)題:
①機(jī)動(dòng)車(chē)行駛幾小時(shí)后加油?
②機(jī)動(dòng)車(chē)每小時(shí)耗油多少升?
③中途加油多少升?
④如果加油站距目的地還有230公里,機(jī)動(dòng)車(chē)平均每小時(shí)行駛40公里,要到達(dá)目的地,油箱中的油是否夠用?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若a,b,c是有理數(shù),|a|=4,|b|=9,|c|=6,且ab<0,bc>0,求a﹣b﹣(﹣c)的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)P關(guān)于y軸的對(duì)稱(chēng)點(diǎn)P1的坐標(biāo)是(2,3),則點(diǎn)P坐標(biāo)是( )
A.(-3,-2) B.(-2,3) C.(2,-3) D.(3,-2)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法中,正確的是( )
A.兩條射線(xiàn)組成的圖形叫做角
B.直線(xiàn)l經(jīng)過(guò)點(diǎn)A,那么點(diǎn)A在直線(xiàn)l上
C.把一個(gè)角分成兩個(gè)角的射線(xiàn)叫角的平分線(xiàn)
D.若AB=BC,則點(diǎn)B是線(xiàn)段AC的中點(diǎn)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法中,不正確的是( )
A.同位角相等,兩直線(xiàn)平行;
B.兩直線(xiàn)平行,內(nèi)錯(cuò)角相等;
C.兩直線(xiàn)被第三條直線(xiàn)所截,同旁?xún)?nèi)角互補(bǔ);
D.同旁?xún)?nèi)角互補(bǔ),兩直線(xiàn)平行
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)O是直線(xiàn)AB上任一點(diǎn),射線(xiàn)OD和射線(xiàn)OE分別平分∠AOC和∠BOC.
(1)與∠AOE互補(bǔ)的角是 .
(2)若∠AOC=72°,求∠DOE的度數(shù);
(3)當(dāng)∠AOC=x時(shí),請(qǐng)直接寫(xiě)出∠DOE的度數(shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com