【題目】在數(shù)軸上,點(diǎn)M、N表示的數(shù)分別為a、b,我們把a、b之差的絕對(duì)值叫做點(diǎn)M、N之間的距離,即MN=│a-b│.已知數(shù)軸上三點(diǎn)A、O、B表示的數(shù)分別為-3,0,1,點(diǎn)P為數(shù)軸上任意一點(diǎn),其表示的數(shù)為x.
(1)如果點(diǎn)P到點(diǎn)A、點(diǎn)B的距離相等,那么x=_______;
(2)當(dāng)x是多少時(shí),點(diǎn)P到點(diǎn)A、點(diǎn)B的距離之和是6;
(3)若點(diǎn)P以每秒3個(gè)單位長(zhǎng)度的速度從點(diǎn)O沿著數(shù)軸的負(fù)方向運(yùn)動(dòng)時(shí),點(diǎn)E以每秒1個(gè)單位長(zhǎng)度的速度從點(diǎn)A沿著數(shù)軸的負(fù)方向運(yùn)動(dòng),點(diǎn)F以每秒4個(gè)單位長(zhǎng)度的速度從點(diǎn)B沿著數(shù)軸的負(fù)方向運(yùn)動(dòng),且三個(gè)點(diǎn)同時(shí)出發(fā),那么運(yùn)動(dòng)幾秒時(shí),點(diǎn)P到點(diǎn)E、點(diǎn)F的距離相等.
【答案】(1)-1;(2)x=-4或2;(3)運(yùn)動(dòng)秒或2秒時(shí),點(diǎn)P到點(diǎn)E、點(diǎn)F的距離相等.
【解析】
(1)根據(jù)三點(diǎn)A,O,B對(duì)應(yīng)的數(shù),得出AB的中點(diǎn)為:x=(-3+1)÷2進(jìn)而求出即可;
(2)根據(jù)P點(diǎn)在A點(diǎn)左側(cè)或在B點(diǎn)右側(cè)分別列方程求解即可;
(3)設(shè)運(yùn)動(dòng)時(shí)間為t,分別表示出點(diǎn)P、E、F所表示的數(shù),然后根據(jù)兩點(diǎn)間的距離的表示列出絕對(duì)值方程,然后求解即可.
解:(1)∵A,O,B對(duì)應(yīng)的數(shù)分別為-3,0,1,點(diǎn)P到點(diǎn)A,點(diǎn)B的距離相等,
∴x的值是-1.
故答案為:-1;
(2)存在符合題意的點(diǎn)P,
當(dāng)P在A在左側(cè)時(shí),(1-x)+(-3-x)=6,解得x=-4;
當(dāng)P在B在右側(cè)時(shí),(x-1)+[x-(-3)6,解得x=2.
∴x=-4或2.
(3)設(shè)運(yùn)動(dòng)時(shí)間為t,點(diǎn)P表示的數(shù)為-3t,點(diǎn)E表示的數(shù)為-3-t,點(diǎn)F表示的數(shù)為1-4t,
∵點(diǎn)P到點(diǎn)E,點(diǎn)F的距離相等,
∴|-3t-(-3-t)|=|-3t-(1-4t)|,
∴-2t+3=t-1或-2t+3=1-t,
解得t=或t=2.
答:運(yùn)動(dòng)秒或2秒時(shí),點(diǎn)P到點(diǎn)E、點(diǎn)F的距離相等.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小知識(shí):如圖,我們稱兩臂長(zhǎng)度相等(即)的圓規(guī)為等臂圓規(guī). 當(dāng)?shù)缺蹐A規(guī)的兩腳擺放在一條直線上時(shí),若張角,則底角.
請(qǐng)運(yùn)用上述知識(shí)解決問(wèn)題:
如圖,個(gè)相同規(guī)格的等臂圓規(guī)的兩腳依次擺放在同一條直線上,其張角度數(shù)變化如下:
,, ,,…
(1)、①由題意可得= ;
②若 平分,則= ;
(2)、= (用含的代數(shù)式表示);
(3)、當(dāng)時(shí),設(shè)的度數(shù)為,的角平分線與構(gòu)成的角的度數(shù)為,那么與之間的等量關(guān)系是 ,請(qǐng)說(shuō)明理由. (提示:可以借助下面的局部示意圖)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD為平行四邊形,∠BAD的角平分線AE交CD于點(diǎn)F,交BC的延長(zhǎng)線于點(diǎn)E.
(1)求證:BE=CD;
(2)連接BF,若BF⊥AE,∠BEA=60°,AB=4,求平行四邊形ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我們約定:對(duì)角線相等的四邊形稱之為:“等線四邊形”。
(1)①在“平行四邊形、菱形、矩形、正方形”中一定是“等線四邊形”的是___________________;
②如圖1,若四邊形是“等線四邊形”, 分別是邊的中點(diǎn),依次連接,得到四邊形,請(qǐng)判斷四邊形的形狀:______________________;
(2)如圖2,在平面直角坐標(biāo)系中,已知,以為直徑作圓,該圓與軸的正半軸交于點(diǎn),若為坐標(biāo)系中一動(dòng)點(diǎn),且四邊形為“等線四邊形”。當(dāng)的長(zhǎng)度最短時(shí),求經(jīng)過(guò)三點(diǎn)的拋物線的解析式;
(3)如圖3,在平面直角坐標(biāo)系中,四邊形是“等線四邊形”, 在軸的負(fù)半軸上,在軸的負(fù)半軸上,且。點(diǎn)分別是一次函數(shù)與軸,軸的交點(diǎn),動(dòng)點(diǎn)從點(diǎn)開始沿軸的正方向運(yùn)動(dòng),運(yùn)動(dòng)的速度為2個(gè)單位長(zhǎng)度/秒,設(shè)運(yùn)動(dòng)的時(shí)間為秒,以點(diǎn)為圓心,半徑,單位長(zhǎng)度作圓,問(wèn):①當(dāng)與直線初次相切時(shí),求此時(shí)運(yùn)動(dòng)的時(shí)間;②當(dāng)運(yùn)動(dòng)的時(shí)間滿足且時(shí),與直線相交于,求弦長(zhǎng)的最大值。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=x2+bx+c與x軸交于A,B兩點(diǎn),且點(diǎn)A在點(diǎn)B的左側(cè),直線y=﹣x﹣1與拋物線交于A,C兩點(diǎn),其中點(diǎn)C的橫坐標(biāo)為2.
(1)求二次函數(shù)的解析式;
(2)P是線段AC上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)P作y軸的平行線交拋物線于點(diǎn)E,求線段PE長(zhǎng)度的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圖中的每個(gè)方格都是邊長(zhǎng)為1的小正方形,每個(gè)小正方形的頂點(diǎn)稱為格點(diǎn),△ABC的頂點(diǎn)在格點(diǎn)上,稱為格點(diǎn)三角形,請(qǐng)按要求完成下列各題
(1)填空:
AB= ,BC= ,AC= ;
(2)試判斷△ABC的形狀,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于任意四個(gè)有理數(shù)a,b,c,d,可以組成兩個(gè)有理數(shù)對(duì)(a,b)與(c,d).我們規(guī)定:
(a,b)★(c,d)=bc-ad.
例如:(1,2)★(3,4)=2×3-1×4=2.
根據(jù)上述規(guī)定解決下列問(wèn)題:
(1)有理數(shù)對(duì)(2,-3)★(3,-2)=_______;
(2)若有理數(shù)對(duì)(-3,2x-1)★(1,x+1)=7,則x=_______;
(3)當(dāng)滿足等式(-3,2x-1)★(k,x+k)=5+2k的x是整數(shù)時(shí),求整數(shù)k的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在大課間活動(dòng)中,體育老師隨機(jī)抽取了七年級(jí)甲、乙兩班部分女學(xué)生進(jìn)行仰臥起坐的測(cè)試,并對(duì)成績(jī)進(jìn)行統(tǒng)計(jì)分析,繪制了頻數(shù)分布表和統(tǒng)計(jì)圖,請(qǐng)你根據(jù)圖表中的信息完成下列問(wèn)題:
分 組 | 頻數(shù) | 頻率 |
第一組(0≤x<15) | 3 | 0.15 |
第二組(15≤x<30) | 6 | a |
第三組(30≤x<45) | 7 | 0.35 |
第四組(45≤x<60) | b | 0.20 |
(1)頻數(shù)分布表中a=_____,b=_____,并將統(tǒng)計(jì)圖補(bǔ)充完整;
(2)如果該校七年級(jí)共有女生180人,估計(jì)仰臥起坐能夠一分鐘完成30或30次以上的女學(xué)生有多少人?
(3)已知第一組中只有一個(gè)甲班學(xué)生,第四組中只有一個(gè)乙班學(xué)生,老師隨機(jī)從這兩個(gè)組中各選一名學(xué)生談心得體會(huì),則所選兩人正好都是甲班學(xué)生的概率是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某學(xué)校組織七、八年級(jí)全體同學(xué)參觀八路軍太行紀(jì)念館(位于山西省長(zhǎng)治市武鄉(xiāng)縣城).七年級(jí)租用45座大巴車輛,55座大巴車輛;八年級(jí)租用30座中巴車輛,55座大巴車輛.當(dāng)每輛車恰好坐滿時(shí):
(1)用含有,的代數(shù)式分別表示七、八年級(jí)各有學(xué)生數(shù).
(2)用含有,的代數(shù)式表示七、八年級(jí)共有多少學(xué)生?
(3)當(dāng),時(shí),該學(xué)校七、八年級(jí)共有多少學(xué)生?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com