【題目】如圖,在ABC中,DBC邊上的一點(diǎn),ABDB,BE平分∠ABC,交AC邊于點(diǎn)E,連接DE

1)求證:AEDE

2)若∠A100°,∠C50°,求∠AEB的度數(shù).

【答案】1)見解析;(265°

【解析】

1)根據(jù)BE平分ABC,可以得到ABEDBE,然后根據(jù)題目中的條件即可證明ABEDBE全等,從而可以得到結(jié)論成立;

2)根據(jù)三角形內(nèi)角和求出ABC30°,根據(jù)角平分線的定義求出CBE15°,,然后根據(jù)外角的性質(zhì)可以得到AEB的度數(shù).

1)證明:BE平分ABC

∴∠ABEDBE,

ABEDBE中,

,

∴△ABE≌△DBESAS),

AEDE;

2∵∠A100°,C50°

∴∠ABC30°,

BE平分ABC

∴∠ABEDBE,

∴∠CBE15°

∠AEBC+∠CBE50°+15°65°

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在OBC中,邊BC的垂直平分線交BOC的平分線于點(diǎn)D,連接DBDC,過點(diǎn)DDFOC于點(diǎn)F.

(1)BOC60°,求BDC的度數(shù);

(2)BOC,則BDC ;(直接寫出結(jié)果)

(3)直接寫出OB,OCOF之間的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】六一期間,某公園游戲場舉行“迎奧運(yùn)”活動(dòng).有一種游戲的規(guī)則是:在一個(gè)裝有個(gè)紅球和若干個(gè)白球(每個(gè)球除顏色外其他相同)的袋中,隨機(jī)摸一個(gè)球,摸到一個(gè)紅球就得到一個(gè)奧運(yùn)福娃玩具.已知參加這種游戲活動(dòng)為人次,公園游戲場發(fā)放的福娃玩具為個(gè).

求參加一次這種游戲活動(dòng)得到福娃玩具的概率;

請(qǐng)你估計(jì)袋中白球接近多少個(gè)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠ACB=90°,CD是中線,AC=BC,一個(gè)以點(diǎn)D為頂點(diǎn)的45°角繞點(diǎn)D旋轉(zhuǎn),使角的兩邊分別與AC、BC的延長線相交,交點(diǎn)分別為點(diǎn)E,F,DFAC交于點(diǎn)M,DEBC交于點(diǎn)N

1)如圖1,若CE=CF,求證:DE=DF;

2)如圖2,在∠EDF繞點(diǎn)D旋轉(zhuǎn)的過程中:

探究三條線段ABCE,CF之間的數(shù)量關(guān)系,并說明理由;

CE=4CF=2,求DN的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知A3,0),B0,﹣1),連接AB,過點(diǎn)B的垂線BC,使BCBA,則點(diǎn)C坐標(biāo)是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:A÷).

1)化簡A;

2)當(dāng)x2+y213,xy=﹣6時(shí),求A的值;

3)若|xy|+0,A的值是否存在,若存在,求出A的值,若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)的圖象如圖所示,對(duì)稱軸是直線,有以下結(jié)論:①;;.其中正確的結(jié)論的個(gè)數(shù)是( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系中,點(diǎn)Dm,m+8)在第二象限,點(diǎn)B0,n)在y軸正半軸上,作DAx軸,垂足為A,已知OAOB的值大2,四邊形AOBD的面積為12

1)求mn的值.

2)如圖2,CAO的中點(diǎn),DCAB相交于點(diǎn)E,AFBD,垂足為F,求證:AFDE

3)如圖3,點(diǎn)G在射線AD上,且GAGBHGB延長線上一點(diǎn),作∠HANy軸于點(diǎn)N,且∠HAN=∠HBO,求NBHB的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知ABC的三邊分別為a、bc,則下列條件中不能判定ABC是直角三角形的是(  )

A. b2=a2c2B. abc=12

C. C=A﹣∠BD. A:∠B:∠C=345

查看答案和解析>>

同步練習(xí)冊(cè)答案