【題目】如圖,,,垂直的角平分線于,的中點,則圖中兩個陰影部分面積之差的最大值為( )

A.1.5B.3C.4.5D.9

【答案】C

【解析】

首先證明兩個陰影部分面積之差=SADC,然后由DCAC時,ACD的面積最大求出結(jié)論即可.

延長BDAC于點H.設(shè)ADBE于點O

ADBH,∴∠ADB=ADH=90°,∴∠ABD+BAD=90°,∠H+HAD=90°

∵∠BAD=HAD,∴∠ABD=H,∴AB=AH

ADBH,∴BD=DH

DC=CA,∴∠CDA=CAD

∵∠CAD+H=90°,∠CDA+CDH=90°,∴∠CDH=H,∴CD=CH=AC

BD=DH,AC=CH,∴SCDH=SADHSABH

AE=EC,∴SABESABH,∴SCDH=SABE

SOBDSAOE=SADBSABE=SADHSCDH=SACD

AC=CD=3,∴當(dāng)DCAC時,ACD的面積最大,最大面積為3×3

故選C

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線經(jīng)過點A,0),B,0),且與y軸相交于點C

1求這條拋物線的表達式;

2)求∠ACB的度數(shù);

3設(shè)點D是所求拋物線第一象限上一點,且在對稱軸的右側(cè),點E在線段AC上,且DEAC,當(dāng)DCEAOC相似時,求點D的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在矩形ABCD中,E為射線BC上一點,DFAEF,連接DE

1)如圖1,若E在線段BC上,且CEEF,求證:ADAE

2)若AB6,AD10,在點E的運動過程中,連接BF

①當(dāng)ABF是以AB為底的等腰三角形時,求BE的長;

②當(dāng)BFDE時,若SADFm,SDCEn,探究mn的值并簡要說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,函數(shù)y=﹣2x+2的圖象分別與x軸,y軸交于A,B兩點,點C在第一象限,ACAB,且AC=AB,則點C的坐標(biāo)為( 。

A. (2,1) B. (1,2) C. (1,3) D. (3,1)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知方程組的解滿足為非正數(shù),為負數(shù).

1)求的取值范圍;

2)化簡:.

3)在m的取值范圍內(nèi),當(dāng)m取何整數(shù)時,不等式2mx+x2m+1的解為x1?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖RtABCAB=CB,將△ABCA點旋轉(zhuǎn)的度數(shù)為a45°a180°),連接BDACF,AH平分∠CADBD于點H,若△FHA為等腰三角形,則a=______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=AC=10厘米,BC=12厘米,點P從點A出發(fā),沿AB邊以1厘米/秒的速度向點B勻速移動;點Q從點B出發(fā),沿BC邊以2厘米/秒的速度向點C勻速移動.如果P、Q同時出發(fā),當(dāng)Q點到達C點時,P點隨之停止運動.用t(秒)表示移動的時間(0≤t≤6)

(1)當(dāng)PQAC時,求t的值;

(2)當(dāng)t為何值時,P、B、Q三點構(gòu)成直角三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖示,正方形ABCD的頂點A在等腰直角三角形DEF的斜邊EF上,EFBD相交于點H,連接CF.

求證:△DAE≌△DCF.

求證:AH2=AE2+HF2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】九(1)班組織班級聯(lián)歡會,最后進入抽獎環(huán)節(jié),每名同學(xué)都有一次抽獎機會,抽獎方案如下:將一副撲克牌中點數(shù)為“2”,“3”,“3”, “5”,“6”的四張牌背面朝上洗勻,先從中抽出1張牌,再從余下的4張牌中抽出1張牌,記錄兩張牌點數(shù)后放回,完成一次抽獎,記每次抽出兩張牌點數(shù)之差為x,按表格要求確定獎項.

獎項

一等獎

二等獎

三等獎

|x|

|x|=4

|x|=3

1|x|<3

(1)用列表或畫樹狀圖的方法求出甲同學(xué)獲得一等獎的概率;

(2)求出每次抽獎獲獎的概率?

查看答案和解析>>

同步練習(xí)冊答案